Analyzing Uncertainty and Optimizing: A Case Study in Retail

Alkis Vazacopoulos Robert Ashford Optimization Direct Inc.

Summary

- Retailer buys a season's stock in advance
 - Tries to sell it over course of season
 - Uses ad-hoc mark-downs, promotions, etc.
 - Needs a quantitative way to manage these
- Model demand by analyzing past sales
- Optimize discounts
- Examine season length and increasing prices

The Retail Problem

- Budget apparel retailer with ~ 150 stores in ~30 states
- Buys stock for a season from Far East
 - 200 600 separate SKUs
 - Different styles, colors and sizes
- Stock quantity and price from suppliers agreed in advance
- Need to sell this stock over limited season
 - e.g. 24 weeks
- Unsold stock at end of season has little value
- Decide sale price and season length

Revenue from a single SKU

Define:

Stock s Demand **ξ** Sale price p Residual value r

• Revenue is:

p $min\{ s, \xi \} + r max\{ s - \xi, 0 \}$

Modeling Demand

- Consider demand in each week of season to be independent
 - Demand for remainder of season sum of independent weekly demands in remaining weeks
- Demand = sales if no stock out
- Mean demand depends on price
- Assume mean demand linear in price or log(price)
 - Although the slope β_1 may be zero

Price-Demand Elasticity

Pet Pull-on Pant

Price-Demand Elasticity

Price-Demand Elasticity

Modeling Random Demand

- Suppose sales are a Poisson process
- Implies it is Binomially distributed
- Approximate with a Normal distribution
- Demand ξ distributed as N(μ, Vμ)
- In practice, shoppers buy more than a single item, so model
 ξ ~ N(μ, γ Vμ)

where mean demand $\mu \equiv \mu(p)$ and γ is a factor which differs for each SKU

- Demand or different SKUs in same period is NOT independent
 - Positive correlation on average

Expected value and variance of revenue from single SKU

Can calculate the expected value of revenue as:

$$p s - (p - r) \sigma \Psi ((s-μ)/σ)$$

```
where \sigma \equiv \gamma \, \forall \mu
and \Psi(X) \equiv X \, \Phi(X) + \varphi(X),
\varphi(X) = \Phi'(X), \, \Phi(X) being the Gaussian distribution fn.
```

- Can calculate the variance of sales
 - More complicated expression

Expected value of future revenue from single SKU

- Model demand as
- $\xi = \beta_0 + \beta_1 p + \epsilon$ where residuals ε have zero mean and
- mean demand $\mu(p) \equiv E[\xi] = \beta_0 + \beta_1 p$ which we estimate by $\hat{\mu}(p) = \hat{\beta}_0 + \hat{\beta}_1 p$
- Thus the expected value of revenue in future period may be estimated by

$$p s - (p - r) \hat{\sigma}(p) \Psi((s - \hat{\mu}(p))/\hat{\sigma}(p))$$

where

$$\hat{\sigma}(p)^2 = V \hat{a} r(\xi) = V \hat{\mu}(p) + \hat{\gamma} V \hat{\mu}(p)$$

Expected value of future revenue from all SKUs

- Add expected future revenue from individual SKUs, but
- Take care in computing σ for all future periods (ε's are independent)
- Use hetroscedastic regression to estimate $\hat{\gamma}$'s
- Use sample SKU correlations in computing variance of revenue
- Adjust approximate demand distribution functions to ban negative sales

Optimizing Price

- Can choose price as:
 initial sales price
 initial sales price less 10%
 initial sales price less 20% ...
- Make best choice for each (group of) SKUs
- Use sales data in season so far
- Set prices at the start of each week
- Increase expected future revenues by 19% (+/- 6%)

Allowing price increases

Longer season length

Longer season length

Addition Revenue from Optimization

Conclusions

- Help with analytical determination of discounts
- Asses effect of raising prices
- Evaluate likely cost of limited season length
- Must be mindful of underlying assumptions
 - Increasing price
 - Decline in demand over course of season

Thanks for listening

Robert Ashford
rwa@optimizationdirect.com
www.optimizationdirect.com

