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Abstract In this paper we introduce a new formulation of the logistics network design prob-

lem encountered in deterministic, single-country, single-period contexts. Our formulation is

flexible and integrates location and capacity choices for plants and warehouses with supplier

and transportation mode selection, product range assignment and product flows. We next

describe two approaches for solving the problem—a simplex-based branch-and-bound and

a Benders decomposition approach. We then propose valid inequalities to strengthen the

LP relaxation of the model and improve both algorithms. The computational experiments

we conducted on realistic randomly generated data sets show that Benders decomposition

is somewhat more advantageous on the more difficult problems. They also highlight the

considerable performance improvement that the valid inequalities produce in both solution

methods. Furthermore, when these constraints are incorporated in the Benders decomposition

algorithm, this offers outstanding reoptimization capabilities.

Keywords Logistics . Network design . Benders decomposition

Introduction

In recent years, the constant emphasis on productivity gains and customer satisfaction has led

to rapidly evolving business environments characterized by time compressed supply chains,

alliances, and mergers and acquisitions. In turn, these have highlighted the importance of

properly designing or redesigning the production and distribution networks of manufactur-

ing firms. A growing emphasis on e-collaboration, technologically advanced manufacturing,

and just-in-time pick-ups and deliveries is also amplifying the role of supply chain manage-

ment as a strategic tool for competitiveness. As a result, a number of firms have relied on
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optimization techniques for decision support when planning their logistics activities (see, e.g.,

Camm et al., 1997; Köksalan and Süral, 1999; Pooley, 1994; Robinson, Gao and Muggenborg,

1993).

This paper addresses the problem of designing the supply chain or logistics network of a

manufacturing firm operating in a single-country environment. A logistics network is a set

of suppliers, manufacturing plants and warehouses organized to manage the procurement

of raw materials, their transformation into finished products, and the distribution of finished

products to customers. Usually, the planning of a logistics network involves making decisions

regarding:� the number, location, capacity and technology of manufacturing plants and warehouses;� the selection of suppliers;� the assignment of product ranges to manufacturing plants and warehouses;� the selection of distribution channels and transportation modes;� the flows of raw materials, semi-finished and finished products through the network.

These decisions can be classified into three categories according to their importance

and the length of the planning horizon considered. First, choices regarding the location,

capacity and technology of plants and warehouses are generally seen as strategic with a

planning horizon of several years. Second, supplier selection, product range assignment

as well as distribution channel and transportation mode selection belong to the tactical
level and can be revised every few months. Finally, raw material, semi-finished and finished

product flows in the network are operational decisions that are easily modified in the short

term.

The logistics network design problem (LNDP) consists of making the above-mentioned

decisions so as to satisfy customer demands while minimizing the sum of fixed and variable

costs associated with procurement, production, warehousing and transportation. Because

of its complexity, it is often decomposed into several components treated separately. For

instance, one may separate strategic, tactical and operational decisions or divide the network

in several parts according to product categories or geographical considerations. However,

given the importance of the interactions between these decisions, important benefits can

be obtained by treating the network as a whole and considering its various components

simultaneously.

Although there exists an abundant literature on capacitated facility location problems

(see, e.g., Aikens, 1985; Drezner, 1995; Lee, 1993), very few models address the LNDP in its

entirety. Following the pioneering work of Geoffrion and Graves (1974) on multi-commodity

distribution network design, numerous models have been developed to locate facilities by

taking into account several production, transportation and warehousing issues. An interesting

example is the work of Pirkul and Jayaraman (1996) on integrated production, transportation

and distribution planning. However, as can be seen from the reviews by Geoffrion and Powers

(1995), Thomas and Griffin (1996) and Vidal and Goetschalckx (1997), most location models

do not incorporate at least some aspects of the problem such as supplier or transportation

mode selection.

One of the first efforts to integrate procurement, production and distribution decisions

belongs to Cohen and Lee (1989) who developed a detailed model for logistics network

design in a global (i.e., international) context. The model considers a single planning period

with deterministic demand and is solved by a hierarchical approach in which integer variables

associated with the design of the network are first assigned values so as to obtain a simple

linear program. A multi-period model for the LNDP in a global context was later proposed by

Arntzen et al. (1995). Besides dealing with typical international issues such as local content
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and offset trade constraints, the model can handle an arbitrary number of production and

distribution stages. A sophisticated solution methodology based on elastic constraints, row

factorization, cascaded problem solution and constraint-branching enumeration was used to

solve the model which has been applied at Digital Equipment Corporation. Recently, Dogan

and Goetschalckx (1999) described a comprehensive multi-period model for the LNDP in a

single-country environment. The model integrates strategic issues such as facility location

and sizing with tactical decisions concerning production, inventory and customer allocation.

It is solved by a Benders decomposition approach in which the subproblem separates into a

set of network flow problems.

The contribution of this paper is to introduce a general and flexible formulation of the

LNDP for the deterministic, single-country, single-period context, and describe two ap-

proaches for solving the problem: a simplex-based branch-and-bound approach and a Ben-

ders decomposition approach. Furthermore, we propose valid inequalities to strengthen the

LP relaxation of the model and improve both algorithms. The formulation extends previous

work by integrating location and capacity choices for plants and warehouses with supplier

and transportation mode selection, product range assignment and product flows. Its structure

makes it easy to impose several types of configuration constraints such as single-sourcing

requirements. It can also be adapted to handle several problem extensions such as multi-

ple planning periods or stochastic demand. While the formulation can be solved efficiently

by using a commercial integer programming solver, it is also well suited for a primal de-

composition approach such as Benders decomposition. The latter approach is particularly

useful because of the reoptimization capabilities it provides when performing “what-if”

analyses.

The rest of the paper is organized as follows. The next section presents a mathematical

formulation of the LNDP and then Section 2 describes the solution methodology. Compu-

tational experiments are reported in Section 3, followed by our conclusions and extensions

discussed in the final section.

1. Mathematical formulation

Let F be the set of finished products. An element f ∈ F identifies either a specific article

manufactured or assembled by the company, or a family of similar articles that can be

aggregated and treated as a single product for planning purposes. Let R denote the set of raw

materials and purchased components or supplies used in the manufacturing or assembly of

finished products. For every r ∈ R and every f ∈ F , let br f be the quantity of raw material

r required in the production of one unit of product f . The set of all suppliers considered by

the company is denoted by S, and Sr ⊆ S represents the subset of suppliers that are eligible

to provide raw material r ∈ R. Let also P and W denote the sets of actual and potential

locations for plants and warehouses, respectively. For every product f ∈ F , let P f and W f

denote the subsets of plants and warehouses at which product f can be made and stored,

respectively. Finally, let C be the set of customer locations. Again, an element c ∈ C may

identify either a specific customer or a group of customers (i.e., a customer zone) that may be

aggregated for planning purposes. For every c ∈ C and every f ∈ F , let a f
c be the demand

of customer c for product f .

For notational convenience, denote by K = R ∪ F the set of all commodities represented

in the model, and by O = S ∪ P ∪ W and D = P ∪ W ∪ C the sets of origins and destina-

tions for these commodities. Then, for every k ∈ K, define Ok ⊆ O and Dk ⊆ D as the sets

of potential origins and destinations for commodity k. More specifically, one has Or = Sr
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for any raw material r ∈ R, and O f = P f ∪ W f for any product f ∈ F . Similarly, possible

destinations for a raw material r are plants at which products that require this raw material

can be made, i.e., Dr = ∪ f ∈F rP f , where F r = { f ∈ F |br f > 0}. Finally, the set of possible

destinations for a product f is defined as D f = W f ∪ C f where C f = {c ∈ C|a f
c > 0}.

For every k ∈ K and every o ∈ Ok , let V k
o be a binary variable, with cost ck

o , taking the

value 1 if and only if commodity k is assigned to origin o. For instance, variable V r
s would

take the value 1 if supplier s is selected to provide raw material r , and variable V f
p would

take the value 1 if product f is made at plant p. For every origin o ∈ O, also define a binary

variable Uo equal to 1 if and only if this origin is assigned at least one commodity, and let co

be the fixed cost of selecting this origin. In the case of a supplier s ∈ S, the variable Us would

take the value 1 if the supplier is selected to provide at least one raw material. In the case of

a potential plant or warehouse location, the associated variable would take the value 1 if the

corresponding location is chosen to site a facility. For every k ∈ K, o ∈ Ok and d ∈ Dk , let

Y k
od be a binary variable, with cost ck

od, equal to 1 if and only if origin o provides commodity

k to destination d . For every k ∈ K and o ∈ Ok , let qk
o be an upper limit on the amount of

commodity k to be provided by origin o to any destination and let qk
od be the maximum to be

provided to destination d . Finally, for every o ∈ O, let uo be the capacity, in equivalent units,

of origin o, and for every k ∈ K, let uk
o be the amount of capacity required by one unit of

commodity k at origin o. In the case of a plant p, u p would represent the total manufacturing

capacity in the planning period while u f
p would be the transformation factor to convert real

units of product f into equivalent units.

For every origin-destination pair (o, d) ∈ O × D, let Mod be the set of transportation

modes between o and d. Then, for every m ∈ Mod, define a binary variable Zm
od equal

to 1 if and only if transportation mode m is used between origin o and destination d .

Let cm
od be the fixed cost of using mode m, and let gm

od be its capacity. For every k ∈ K,

o ∈ Ok and d ∈ Dk , let Mk
od ⊆ Mod be the set of feasible transportation modes between

o and d for commodity k, and let gkm be the capacity usage of one unit of commodity

k in mode m. Then, for every m ∈ Mk
od, define a non-negative variable Xkm

od , with cost

ckm
od , representing the number of units of commodity k transported from origin o to desti-

nation d using mode m. For instance, Xfm
pw is the amount of product f transported from

plant p to warehouse w using mode m ∈ M f
pw. Because a single planning period is con-

sidered, the total amount of product p manufactured at plant p in this period is given by∑
w∈W

∑
m∈Mpw

X fm
pw. The notation is summarized in Table 1.

Let B denote the set of integers {0, 1}. The model can then be stated as follows:

Minimize

∑
o∈O

[
coUo +

∑
d∈D

∑
m∈Mod

cm
od Zm

od

]
+

∑
k∈K

∑
o∈Ok

[
ck

oV k
o +

∑
d∈Dk

[
ck

odY k
od +

∑
m∈Mk

od

ckm
od Xkm

od

]]
(1)

subject to∑
s∈Sr

∑
m∈Mr

sp

Xrm
sp −

∑
f ∈F r

∑
w∈W f

∑
m∈M f

pw

br f X fm
pw = 0 r ∈ R; p ∈ P (2)

∑
p∈P f

∑
m∈M f

pw

Xfm
pw −

∑
c∈C f

∑
m∈M f

wc

X fm
wc = 0 f ∈ F ; w ∈ W f (3)
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Table 1 Summary of notation

a f
c Demand of customer c for product f

br f Amount of raw material r in product f
co Fixed cost of selecting origin o
ck

o Fixed cost of assigning commodity k to origin o

ck
od Fixed cost of providing commodity k to destination d from origin o

cm
od Fixed cost of using transportation mode m between o and d

ckm
od Unit cost for providing commodity k to d from o with mode m

gm
od Capacity of mode m between o and d

gkm Amount of capacity required by one unit of commodity k in mode m

qk
o Upper limit on the amount of commodity k shipped from origin o

qk
od Upper limit on the amount of commodity k shipped from o to d

uo Capacity of origin o in equivalent units

uk
o Amount of capacity required by one unit of commodity k at origin o

C Set of customers

C f Set of customers that require product f
D Set of destinations

Dk Set of potential destinations for commodity k
F Set of finished products

Fr Set of finished products that require raw material r
K Set of commodities

Mod Set of transportation modes between o and d

Mk
od Set of modes between o and d for commodity k

O Set of origins

Ok Set of potential origins for commodity k
P Set of potential plant locations

P f Set of potential plant locations for making product f
R Set of raw materials

S Set of potential suppliers

Sr Set of potential suppliers providing raw material r
W Set of potential warehouse locations

W f Set of potential warehouse locations for storing product f

Xkm
od Amount of commodity k provided by o to d with mode m

Uo = 1 if origin o is selected

V k
o = 1 if commodity k is assigned to origin o

Y k
od = 1 if origin o provides commodity k to destination d

Zm
od = 1 if mode m is selected between o and d

∑
w∈W f

∑
m∈M f

wc

X fm
wc = a f

c f ∈ F ; c ∈ C f (4)

∑
k∈K

∑
d∈Dk

∑
m∈Mk

od

uk
o Xkm

od − uoUo ≤ 0 o ∈ O (5)

∑
d∈Dk

∑
m∈Mk

od

Xkm
od − qk

o V k
o ≤ 0 k ∈ K; o ∈ Ok (6)
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m∈Mk

od

Xkm
od − qk

odY k
od ≤ 0 k ∈ K; o ∈ Ok ; d ∈ Dk (7)

∑
k∈K

gkm Xkm
od − gm

od Zm
od ≤ 0 o ∈ O; d ∈ D; m ∈ Mod (8)

Xkm
od ≥ 0 k ∈ K; o ∈ Ok ; d ∈ Dk ; m ∈ Mk

od (9)

Uo ∈ B o ∈ O (10)

V k
o ∈ B k ∈ K; o ∈ Ok (11)

Y k
od ∈ B k ∈ K ; o ∈ Ok ; d ∈ Dk (12)

Zm
od ∈ B o ∈ O; d ∈ D; m ∈ Mod. (13)

The objective function (1) minimizes the sum of all fixed and variable costs. Variable costs

ckm
od may include not only transportation expenses but also relevant acquisition, production

and storage costs. Constraints (2) ensure that the total amount of raw material r shipped

to plant p is equal to the total amount required by all products made at this plant, while

constraints (3) ensure that all finished products that enter a given warehouse also leave that

warehouse. Demand constraints are imposed by equations (4). Constraints (5) impose global

capacity limits on suppliers, plants and warehouses, whereas limits per commodity are

enforced through (6). The latter constraints can be used to restrict the total amount of a given

raw material that is purchased from a particular supplier or the number of units of a finished

product that are made in a particular plant. Constraints (7) ensure that units of commodity

k are not transported from o to d unless origin o is selected to provide the commodity to

destination d . Finally, capacity constraints on individual transportation modes are imposed

by (8).

Model (1)–(13) can be extended in several ways to handle various additional realistic

situations. First, it is worth mentioning that by reversing the inequality sign, constraints

similar to (5)–(8) can be used to impose lower limits on acquisition, production, storage

and transportation activities. Such constraints can be used, for example, when a minimum

amount of raw material must be purchased from a supplier to obtain a quantity discount. They

can also be used to model situations where a minimum amount of finished product must be

manufactured for a plant to be economically viable.

Second, if several capacity or technology choices are considered for a potential plant or

warehouse location, these options can be modeled by defining several copies of the same

location with different capacities, uo and qk
o , and different fixed and variable costs. A similar

approach can be used to model quantity discounts offered by suppliers. It also applies to

transportation modes which can be replicated to represent the same physical link with different

capacities and costs.

Of course, if a given supplier, plant or warehouse must be selected, then the corre-

sponding Uo variable can explicitly be set to 1 in the model. This is useful in the case

of existing facilities which should remain active or when some location decisions are

made with respect to criteria that are not taken into account by the model. The same

reasoning also applies to transportation mode variables Zm
od and assignment variables V k

o
and Y k

od.

Additional network configuration constraints can also be introduced in the model. For

example, if the total number of plants to be operated must lie between n and n̄, these limits
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can be enforced with the simple constraint:

n ≤
∑
p∈P

Up ≤ n̄. (14)

Similarly, if nr and n̄r are lower and upper limits on the total number of suppliers that should

supply raw material r ∈ R, then these limits can be imposed by the constraints:

nr ≤
∑
o∈Or

V r
o ≤ n̄r r ∈ R. (15)

Finally, single-sourcing for commodity k at destination d can be imposed with the constraint:∑
o∈Ok

Y k
od ≤ 1. (16)

Single-sourcing constraints can be used, for example, to ensure that for each product

f ∈ F and each customer c ∈ C f , the demand of the customer for the particular product is

entirely satisfied from a unique warehouse.

Model (1)–(13) assumes a single manufacturing stage and a single distribution stage.

These assumptions are easily relaxed by extending the network structure and modifying

constraints (2) and (3) accordingly. In the case of seasonal demand, several planning periods

can also be considered by defining Xkmt
od variables, where t denotes the period number,

and introducing additional end-of-period inventory variables. Finally, the formulation can

be adapted to handle stochastic demand in the form of an enumerable set of scenarios.

These extensions will not be addressed in this paper but will be the object of subsequent

research.

2. Solution methodology

Model (1)–(13) can be solved by a branch-and-bound approach in which lower bounds

are computed by the simplex algorithm. However, its structure is also well suited for

a primal decomposition approach such as Benders decomposition (Benders, 1962). We

first present this approach in Section 2.1, and then introduce valid inequalities that

strengthen the LP relaxation and improve the performance of both solution approaches in

Section 2.2.

2.1. Benders decomposition

For given values of the U , V , Y and Z variables that satisfy integrality constraints

(10)–(13), model (1)–(13) reduces to the following primal subproblem involving only the Xkm
od

variables:

Minimize
∑
k∈K

∑
o∈Ok

∑
d∈Dk

∑
m∈Mk

od

ckm
od Xkm

od (17)

∑
s∈Sr

∑
m∈Mr

sp

Xrm
sp −

∑
f ∈F r

∑
w∈W f

∑
m∈M f

pw

br f X fm
pw = 0 r ∈ R; p ∈ P (18)
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p∈P f

∑
m∈M f

pw

Xfm
pw −

∑
c∈C

∑
m∈M f

wc

X fm
wc = 0 f ∈ F ; w ∈ W f (19)

∑
w∈W f

∑
m∈M f

wc

X fm
wc = a f

c f ∈ F ; c ∈ C f (20)

∑
k∈K

∑
d∈Dk

∑
m∈Mk

od

uk
o Xkm

od ≤ uoŪo o ∈ O (21)

∑
d∈Dk

∑
m∈Mk

od

Xkm
od ≤ qk

o V̄ k
o k ∈ K; o ∈ Ok (22)

∑
m∈Mk

od

Xkm
od ≤ qk

odȲ k
od k ∈ K; o ∈ Ok ; d ∈ Dk (23)

∑
k∈K

gkm Xkm
od ≤ gm

od Z̄m
od o ∈ O; d ∈ D; m ∈ Mod (24)

Xkm
od ≥ 0 k ∈ K; o ∈ Ok ; d ∈ Dk ; m ∈ Mk

od. (25)

Let α = (αr
p|r ∈ R; p ∈ P), β = (β

f
w | f ∈ F ; w ∈ W), γ = (γ

f
c | f ∈ F ; c ∈ C), δ =

(δo ≤ 0|o ∈ O), ζ = (ζ k
o ≤ 0|k ∈ K ; o ∈ Ok), η = (ηk

od ≤ 0|k ∈ K ; o ∈ Ok ; d ∈ Dk) and

θ = (θm
od ≤ 0|o ∈ O; d ∈ D; m ∈ Mod) be the dual variables associated with constraints

(18)–(24), respectively.

The dual of the primal subproblem, called the dual subproblem, can be written as:

Maximize
∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoŪoδo +

∑
d∈D

∑
m∈Mod

gm
od Z̄m

odθ
m
od

]

+
∑
k∈K

∑
o∈Ok

[
qk

o V̄ k
o ζ k

o +
∑
d∈Dk

qk
odȲ k

odη
k
od

]
(26)

subject to

(α,β,γ, δ, ζ,η,θ) ∈ Δ, (27)

where Δ denotes the polyhedron defined by the constraints of the problem.

The polyhedron Δ does not depend on the values of the binary variables U , V , Y and

Z which appear only in the objective function of the dual subproblem. Because all Xkm
od

variables are non-negative in the primal subproblem, the dual subproblem has one constraint

of the form ≤ ckm
od for each variable Xm

od. If all cost coefficients ckm
od are non-negative, the dual

subproblem is always feasible because the null vector 0 is a feasible solution. Hence, either

the primal subproblem is infeasible or it is feasible and bounded. Let PΔ and QΔ be the sets

of real-valued vectors representing the extreme points and extreme rays of Δ, respectively.

For given values of the U , V , Y and Z variables, the dual subproblem is bounded and the

primal subproblem is feasible if

∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoŪoδo +

∑
d∈D

∑
m∈Mod

gm
od Z̄m

odθ
m
od

]
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+
∑
k∈K

∑
o∈Ok

[
qk

o V̄ k
o ζ k

o +
∑
d∈Dk

qk
odȲ k

odη
k
od

]
≤ 0 (28)

for all extreme rays (α,β,γ, δ, ζ,η,θ) ∈ QΔ. In this case, the optimal value of both prob-

lems is given by the expression

max
(α,β,γ,δ,ζ,η,θ)∈PΔ

∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoŪoδo +

∑
d∈D

∑
m∈Mod

gm
od Z̄m

odθ
m
od

]

+
∑
k∈K

∑
o∈Ok

[
qk

o V̄ k
o ζ k

o +
∑
d∈Dk

qk
odȲ k

odη
k
od

]
(29)

which is the maximum, over all extreme points of Δ, of the dual subproblem objective

function (26).

Let MP represent the set of configuration and integrality constraints on U , V , Y and Z
variables. This set can contain any constraints, such as those of the form (14)–(16), that involve

only the binary variables. Introducing the free variable λ, one thus obtains the following

Benders master problem:

Minimize
∑
o∈O

[
coUo +

∑
d∈D

∑
m∈Mod

cm
od Zm

od

]
+

∑
k∈K

∑
o∈Ok

[
ck

oV k
o +

∑
d∈Dk

ck
odY k

od

]
+ λ (30)

subject to

∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoδoUo +

∑
d∈D

∑
m∈Mod

gm
odθ

m
od Zm

od

]

+
∑
k∈K

∑
o∈Ok

[
qk

oζ k
o V k

o +
∑
d∈Dk

qk
odη

k
odY k

od

]
≤ 0 (α,β,γ, δ, ζ,η,θ) ∈ QΔ (31)

λ ≥
∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoδoUo +

∑
d∈D

∑
m∈Mod

gm
odθ

m
od Zm

od

]

+
∑
k∈K

∑
o∈Ok

[
qk

oζ k
o V k

o +
∑
d∈Dk

qk
odη

k
odY k

od

]
(α,β,γ, δ, ζ,η,θ) ∈ PΔ (32)

(U, V, Y, Z ) ∈ MP . (33)

Formulation (30)–(33) contains a very large number of constraints. However, an efficient

solution method is obtained by dynamically generating only subsets of feasibility cuts (31)

and optimality cuts (32). Starting from empty subsets of extreme points and extreme rays,

each iteration of the algorithm first solves a relaxed Benders master problem which consists

of model (30)–(33), where the sets PΔ and QΔ are replaced by the subsets Pτ
Δ ⊆ PΔ and

Qτ
Δ ⊆ QΔ of extreme points and extreme rays available at iteration τ . Solving the relaxed

Benders master problem provides a lower bound L B on the optimal solution value as well
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as a solution (Ū , V̄ , Ȳ , Z̄ ) which is used to set up the dual subproblem (26)–(27). If the dual

subproblem is bounded, an optimal solution corresponding to an extreme point of Δ can be

identified and leads to an optimality cut of the form (32). In this case, an upper bound UB on

the optimal solution value can be computed, and a feasible solution to the original problem

can be identified by solving the primal subproblem (17)–(25). If the dual subproblem is

unbounded, an extreme ray that violates one of the constraints (31) can be identified. After

adding the newly identified extreme point or extreme ray to the appropriate set, the algorithm

moves to iteration τ + 1. The process continues until LB = UB, at which point an optimal

solution has been identified. More details on this approach can be found in the original paper

of Benders (1962) and in application papers such as those of Geoffrion and Graves (1974)

and Dogan and Goetschalckx (1999).

2.1.1. Generating Pareto-optimal cuts

When the primal subproblem (17)–(25) is degenerate, the dual subproblem (26)–(27) may

have several optimal solutions, possibly yielding different optimality cuts of the form (32).

Let φ = (α,β,γ, δ, ζ,η,θ) denote an extreme point of the set PΔ. Let also rhs(φ) denote

the right-hand-side of (32) for the extreme point φ. The cut obtained from the extreme point

φ1 dominates that obtained from the extreme point φ2 if, for every (U, V, Y, Z ) ∈ MP ,

rhs(φ1) ≥ rhs(φ2), with strict inequality for at least one point in MP . A cut is said to be

Pareto-optimal if no other cut dominates it (see, e.g., Magnanti and Wong, 1981).

Let MP L P denote the polyhedron obtained by replacing the set B by the interval [0, 1]

in (10)–(13), and let ri(MP L P ) denote the relative interior of MP L P .

For a given vector (Ū , V̄ , Ȳ , Z̄ ) ∈ MP L P for which the dual subproblem is bounded, let

v(Ū , V̄ , Ȳ , Z̄ ) denote the optimal value of the subproblem. To identify an optimal solution to

the dual subproblem that yields a Pareto-optimal cut, one must solve the following auxiliary

subproblem, where (Ũ , Ṽ , Ỹ , Z̃ ) ∈ ri(MP L P ) :

Maximize
∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoŨoδo +

∑
d∈D

∑
m∈Mod

gm
od Z̃m

odθ
m
od

]

+
∑
k∈K

∑
o∈Ok

[
qk

o Ṽ k
o ζ k

o +
∑
d∈Dk

qk
odỸ k

odη
k
od

]
(34)

subject to ∑
f ∈F

∑
c∈C f

a f
c γ f

c +
∑
o∈O

[
uoŪoδo +

∑
d∈D

∑
m∈Mod

gm
od Z̄m

odθ
m
od

]

+
∑
k∈K

∑
o∈Ok

[
qk

o V̄ k
o ζ k

o +
∑
d∈Dk

qk
odȲ k

odη
k
od

]
= v(V̄ , Ȳ , Z̄ , Ū ) (35)

(α,β,γ, δ, ζ,η,θ) ∈ Δ. (36)

The additional constraint (35) ensures that one will choose an extreme point from the set

of optimal solutions to the original dual subproblem. Let q be the dual variable associated

with constraint (35). Instead of solving model (34)–(36), one can solve its dual which is

easily obtained by introducing the extra variable q in model (17)–(25) and modifying its

right-hand-side. Solving the auxiliary problem in this form is very convenient in terms of

ease of implementation and computational efficiency since the same basic representation can
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be used to solve both the primal subproblem (17)–(25) and the auxiliary subproblem that is

used to generate Pareto-optimal cuts.

2.1.2. Generating a set of initial cuts from problem relaxations and computing integer
solutions

Instead of solving the integer relaxed master problem at every iteration of the Benders de-

composition algorithm, one may first solve the LP relaxation of the problem by relaxing

the integrality constraints on the master problem variables (see, e.g., McDaniel and Devine,

1977). Once the LP relaxation is solved, integrality constraints are reintroduced and ad-

ditional cuts are generated until an optimal integer solution is found. The cuts generated

when solving the LP relaxation are valid for the integer programming problem because

the relaxation of integrality constraints on master problem variables has no effect on the

subproblem.

The same idea can be used when configuration constraints are imposed on the binary

variables. For example, if single-sourcing constraints (16) are imposed, these constraints can

first be relaxed so as to generate optimality and feasibility cuts by solving a smaller, relaxed

Benders master problem. Once an optimal solution has been reached for this relaxation, the

single-sourcing constraints are reintroduced and more cuts are generated until an optimal

solution is found.

Finally, to accelerate the solution of the integer master problem, branching priorities can

be used so as to first make branching decisions on Uo variables followed by V k
o , Y k

od and Zm
od

variables, in that order.

2.2. Valid inequalities

When solving model (1)–(13) either with a simplex-based branch-and-bound algorithm or

with the Benders decomposition approach outlined in Section 2.1, various types of valid

inequalities can be added to the formulation. For both approaches, these constraints can

strengthen the LP relaxation of the problem. In the case of the Benders decomposition

approach, they can also improve convergence by helping the relaxed master problem to

find solutions that are close to optimal. Indeed, because the iterative algorithm is initial-

ized from empty subsets of extreme rays and extreme points, the relaxed master problem

initially contains only the integrality constraints. As a result, several iterations must be per-

formed before enough information is transferred to the master problem. Introducing valid

inequalities in the master problem can thus dramatically reduce the number of cuts that

will have to be generated from extreme points and extreme rays of the dual subproblem

polyhedron.

To strengthen the LP relaxation of model (1)–(13), the following constraints can be added

to the formulation:

V k
o ≤ Uo (k ∈ K; o ∈ Ok). (37)

Constraints (37) ensure that a commodity k is not assigned to a source o ∈ Ok unless the

source is also selected. Assuming that uo is finite and uk
o is positive for every k, constraints

(37) are redundant in the presence of (5). However, they may considerably strengthen the

LP relaxation when uo is large compared to the amount of capacity that is actually used in

the solution. Observe that in presence of constraints (37), integrality constraints on the Uo

variables can in fact be relaxed.
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Recalling that a f
c denotes the demand of customer c for product f , one may also add the

constraints ∑
s∈Sr

qr
s V r

s ≥
∑
f ∈F

∑
c∈C f

a f
c br f (r ∈ R) (38)

∑
p∈P f

q f
p V f

p ≥
∑
c∈C f

a f
c ( f ∈ F) (39)

∑
w∈W f

q f
w V f

w ≥
∑
c∈C f

a f
c ( f ∈ F) (40)

to ensure that enough capacity per raw material or per finished product is provided by the

selected suppliers, plants and warehouses to satisfy the demand for all products. In addition,

if the same system of equivalent units is used throughout the logistics network, the following

constraints can be added to ensure that enough global capacity is provided by the selected

suppliers, plants and warehouses:∑
s∈S

usUs ≥
∑
r∈R

ur
∑
f ∈F

br f
∑
c∈C

a f
c (41)

∑
p∈P

u pUp ≥
∑
f ∈F

u f
∑
c∈C

a f
c (42)

∑
w∈W

uwUw ≥
∑
f ∈F

u f
∑
c∈C

a f
c . (43)

The latter two sets of constraints do not strengthen the LP relaxation of the problem.

However, they considerably improve convergence when using Benders decomposition. In

addition, their introduction results in less nodes being explored when using the simplex-

based branch-and-bound approach.

When single-sourcing is imposed, the following constraints can be used to help ensure

that the total demand of all customers assigned to a given warehouse does not exceed its

capacity: ∑
c∈C

Y f
wca f

c ≤ q f
w V f

w (w ∈ W; f ∈ F) (44)

∑
c∈C

∑
f ∈F

u f
wa f

c Y f
wc ≤ uwUw (w ∈ W). (45)

Finally, when fixed costs and capacities gm
od are imposed on transportation modes, the

constraints ∑
w∈W f

Y f
wc ≥ 1 ( f ∈ F ; c ∈ C f ) (46)

∑
p∈P f

Y f
pw ≥ V f

w ( f ∈ F ; w ∈ W f ) (47)

∑
s∈Sr

Y r
sp ≥ V f

p ( f ∈ F ; p ∈ P f ; r ∈ R f ) (48)

Springer



Ann Oper Res (2006) 144:59–82 71∑
m∈Mk

od

Zm
od ≥ Y k

od (k ∈ K; o ∈ Ok ; d ∈ Dk) (49)

Y k
od ≤ V k

o (k ∈ K; o ∈ Ok ; d ∈ Dk) (50)

can be added to the formulation to ensure that whenever a commodity k must be transported

between an origin o and a destination d, at least one transportation mode in Mk
od is selected.

Constraints (46)–(48) ensure that one source is selected for each customer demand, for each

product assigned to a warehouse and for each raw material required to make a product that

is assigned to a plant. Constraints (49) force the selection of at least one transportation mode

for each source that is chosen. Finally, constraints (50) ensure that an origin o is not selected

as a source for commodity k unless the commodity is actually assigned to that origin. These

constraints strengthen the LP relaxation and have proven to be quite effective in computational

testing.

3. Computational experiments

To evaluate the tractability of model (1)–(13) and compare the performance of the two

solution approaches proposed in Section 2, we performed computational experiments on a

set of randomly generated test instances. The procedure used to generate these instances is

first described in Section 3.1, followed by a summary of computational results in Section 3.2

and a discussion of reoptimization capabilities in Section 3.3.

3.1. Description of data

We randomly generated a set of 24 instances according to assumptions that strike a balance

between realism and ease of generation and reproducibility. Instances vary according to three

main dimensions: size, complexity and cost structure. The size of an instance is given by

the number of suppliers (|S|), the number of potential plant locations (|P|), the number

of potential warehouse locations (|W|), the number of customers (|C|), the number of raw

materials (|R|), and the number of finished products (|F |). For an instance with |C| = n, we

have set |S| = |P| = |W| = n/10 and |R| = |F | = n/5. Three basic sizes were used in our

experiments: n = 100, 200 and 300.

The complexity of an instance is itself determined by two factors: capacity structure

and flow magnitude. The capacity structure is determined by the number of suppliers that

can provide each raw material (|Sr |), the number of potential plants that can make each

product (|P f |) and the number of warehouses that can distribute each product (|W f |). For

low capacity instances (denoted by the suffix ‘c’), these values are chosen randomly in the

set {1, . . . , 5} according to a uniform distribution, while for high capacity instances (denoted

by the suffix ‘C’), they are chosen in the set {1, . . . , 10}. The corresponding number of items

(suppliers, plants or warehouses) are then selected randomly (without replacement) according

to a uniform distribution over the set of compatible items. For example, if |Sr | = 4 for raw

material r , then four suppliers will be selected at random from S to obtain Sr .

For both low and high capacity instances, the actual overall and commodity specific

capacities are determined as follows. For each commodity k ∈ K, a unit capacity usage uk is

first generated by choosing a random integer from the set {1, . . . , 10} according to a uniform

distribution. For every origin o ∈ Ok , we assume uk
o = uk . Let u be the total manufacturing

capacity that is required to satisfy the demand for all products and let ū = u/|P|. The

Springer



72 Ann Oper Res (2006) 144:59–82

capacity u p of each plant p ∈ P is selected at random from the set [α · ū, β · ū] according

to a uniform distribution. For all instances, we have set α = 1 and β = |P|. The same

approach is used to generate uo values for the suppliers and warehouses. A similar method

is also used to generate the uk
o values that represent individual capacities for raw materials

and finished products. In this case however, the average value ūk is computed with respect

to the number of locations that can provide this commodity (i.e., |O|k). For low capacity

instances, these rules tend to ensure that approximately 50% of all potential locations are

selected and that each raw material and finished product is assigned to approximately 50%

of the origins that can provide it. These percentages are closer to 25% for high capacity

instances.

The flow magnitude is determined by the number of raw materials that go into each

finished product (|R f |) and the number of customers that have a positive demand for each

product (|C f |). For low flow magnitude instances (denoted by the suffix ’f’), the values of

|R f | and |C f | are chosen from the sets {1, 5} and {1, 25}, respectively, while for high flow

magnitude instances (denoted by the suffix ‘F’), these values are chosen from the sets {1, 10}
and {1, 50}, respectively. In both cases, the actual values a f

c are chosen randomly from the set

{1, . . . , 10}, for every finished product f ∈ F and every customer c ∈ C f . In all instances,

the amount br f of raw material r ∈ R f that goes into each unit of finished product f is also

chosen randomly from the set {1, . . . , 10}.
The cost structure is determined as follows. For each plant p ∈ P , a fixed cost cp is first

chosen randomly in the interval [105, 106] according to a uniform distribution. Next, for each

product f ∈ F , an average fixed cost c̄ f is chosen randomly in the interval [104, 105]. Then,

for every plant p ∈ P f , a fixed cost c f
p is chosen from the set [α · c̄ f , β · c̄ f ], where α = 0.75

and β = 1.25. This ensures that the fixed cost of making product f varies from plant to plant

within reasonable limits. For each warehouse w ∈ W , fixed costs cw and c f
w are generated

by using the same procedure and choosing values in [104, 105] and [103, 104], respectively.

In the case of suppliers, the corresponding intervals are [103, 104] and [102, 103].

For every variable Xkm
od , the variable cost ckm

od is composed of two distinct terms: the

unit transportation cost of commodity k from o to d with mode m and the unit purchase,

production or warehousing cost of commodity k at the origin o. For every commodity k,

every origin o ∈ Ok and every destination d ∈ Dk , an average unit transportation cost t̄ k
od is

first generated by multiplying the Euclidean distance between o and d by a random number

chosen according to a uniform distribution in the interval [1, 10]. For every location, Euclidean

coordinates are themselves chosen randomly in the unit square [0, 1] × [0, 1]. Then, for every

mode m ∈ Mkm
od , a cost t km

od is chosen from the interval [α · t̄ k
od, β · t̄ k

od], where α = 0.75 and

β = 1.25. Next, for every raw material r ∈ R and every finished product f ∈ F , an average

unit purchase, production or warehousing cost āk is chosen randomly in the interval [1, 10].

Then, for every origin o ∈ Ok , a unit cost ak
o is chosen in the interval [α · āk, β · āk] where

α = 0.75 and β = 1.25. Finally, the cost ckm
od is obtained by setting ckm

od = t km
od + ak

o . For each

size and complexity variant, we consider two levels of variable costs. For low variable cost

instances (denoted by the suffix ‘v’), variable costs are determined as explained above while

for high variable cost instances (denoted by the suffix ‘V’), these values are multiplied by

10. These rules ensure that variable costs represent 5–10% of total cost in the former case

and 25–50% in the latter.

Finally, in all instances, a single transportation mode with no fixed cost is used between

suppliers and plants as well as between plants and warehouses. However, for every warehouse-

customer pair, the number of available transportation modes is selected randomly from the

set {1, . . . , 3}. These assumptions represent a situation where the company uses a single

transportation mode (e.g., full truckload transportation) for all movements between plants
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Table 2 Characteristics and size of basic problem instances

Number of variables
Number of

No. |C| |R|, |F | |S|, |P|, |W| Uo V k
o Y k

od Zm
od Xkm

od constraints

100cf 100 20 10 30 162 935 1,309 2,346 2,905

100cF 100 20 10 30 171 1,296 1,334 3,212 3,525

100Cf 100 20 10 30 341 1,761 1,775 5,110 4,490

100CF 100 20 10 30 269 2,096 1,662 5,523 4,856

200cf 200 40 20 60 369 1,803 2,962 4,995 6,218

200cF 200 40 20 60 350 3,085 4,016 7,612 9,072

200Cf 200 40 20 60 567 2,851 4,164 8,556 8,859

200CF 200 40 20 60 606 4,778 5,403 13,580 12,657

300cf 300 60 30 90 539 2,558 4,465 7,072 9,194

300cF 300 60 30 90 520 4,386 6,823 11,567 14,404

300Cf 300 60 30 90 1009 4,825 7,636 16,243 15,560

300CF 300 60 30 90 942 7,920 10,280 23,725 22,323

and warehouses, but has a choice of transportation modes (with different fixed and variable

costs) for the different customer zones it is serving. For each mode, a fixed cost cm
od is then

chosen randomly from the interval [103, 104]. For each finished product f ∈ F , the value gfm

is set equal to 1. Then, the capacity gm
wc of mode m is equal to the total demand (in real units)

of customer c. As a result, the capacity constraints are not binding but their right-hand-sides

serve as “big M” constants to impose the fixed cost cm
od whenever a mode is used.

The three different sizes, two capacity structures and two demand structures yield a total

of 12 basic instances for which two cost structures are considered. Table 2 summarizes the

main characteristics and size of model (1)–(13) for each of these basic instances. The largest

instance, 300CF, has a total of 19,232 binary variables, 23,725 continuous variables and

22,323 constraints. Because fixed costs are imposed only on transportation modes between

warehouses and customers, Zm
od variables are defined only for (o, d) ∈ W × C. Furthermore,

Y k
od variables do not carry a fixed cost but are defined for the purpose of imposing single-

sourcing constraints and introducing valid inequalities (46)–(50). It is worth mentioning

that when fixed costs are not considered for transportation modes and single-sourcing is not

imposed, the resulting model is considerably smaller because all Zm
od and Y k

od variables can

be dropped from the formulation. For each instance, the number of constraints reported in the

table does not include the sets of valid inequalities whose cardinality will be given separately

in the next section.

The size of these instances is similar to or larger than the size of real-life instances solved in

various applications in the literature. For example, Pooley (1994) reports results for a network

with 10 plant and 13 warehouse locations, 48 customer zones and 6 product types. Arntzen

et al. (1995) describe an application at Digital Equipment Corporation with 33 plant and 30

warehouse locations, leading to a model with approximately 6,000 constraints and 20,000

variables. Pirkul and Jayaraman (1996) present results on randomly generated instances with

up to 10 plant and 20 warehouse locations, 100 customer zones and 3 products. They also

present results on real-life instances with 5 plant and 30 warehouse locations, 75 customer

zones and 10 products. Finally, Camm et al. (1997) report on a study at Procter & Gamble

involving hundreds of suppliers, over 50 product lines, 60 plants, 10 distribution centers and

hundreds of customer zones.
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3.2. Summary of results

For each of the 24 instances, we consider three scenarios: in the first, we do not impose

either single-sourcing or fixed costs on transportation modes. In the second, we only require

single-sourcing for each customer demand. Finally, the third supposes single-sourcing as

well as fixed costs on all transportation modes between warehouses and customers. The first

scenario is thus a relaxation of the second which, in turn, is a relaxation of the third.

All tests were performed on a Pentium III (933 MHz) processor with 256 Mb of RAM. For

the simplex-based branch-and-bound approach, we used CPLEX 6.6.1 with steepest-edge

pricing, strong branching and a depth-first search until an integer solution is found, followed

by a best-bound search. These settings provided the best results throughout our experiments.

For the Benders decomposition solution, CPLEX was used for solving the LP relaxations and

the MIP problems. The same parameter settings as above were used for the simplex pricing

and the branch-and-bound search.

When solving the problem with CPLEX, the branch-and-bound search was stopped

when an integer solution within 1% of optimality was identified. Although it would be

possible to solve the problem to optimality, computation times tend to grow considerably

compared to those required to obtain near-optimal solutions. Given that the data (cost, de-

mand and capacity estimations) used in real-life applications often contain a margin of

error larger than 1%, we feel that solving the problem to optimality is rarely justified in

practice.

For Benders decomposition, a two-phase approach was used as previously explained in

Section 2.1.2. In the first phase, integrality was relaxed for the master problem variables

and cuts were generated until (UB-LB) / LB < 0.001 (see Section 2.1). This is equivalent to

solving the LP relaxation with a 0.1% optimality tolerance. In the second phase, integrality

was imposed on the master problem variables, and the algorithm iteratively solved the integer

master problem and generated additional cuts until an integer solution within 1% of opti-

mality was identified. Generally, each second phase iteration takes much longer than a first

phase iteration because the relaxed Benders master problem must be solved with integrality

constraints in the former case. From the computational tests, we have observed that solving

the LP relaxation with a larger optimality tolerance resulted in more cuts being generated

in the second phase whereas decreasing the tolerance below 0.1% did not further reduce the

number of iterations performed in that phase.

Finally, the Pareto-optimal cuts we generated for all instances and scenarios provided

significant performance improvements over the standard implementation. However, each

iteration took longer because the auxiliary subproblem had to be solved whenever the pri-

mal subproblem was feasible. Nevertheless, the total number of iterations performed was

greatly reduced. On most instances, we observed tenfold speed improvements. Figure 1

shows the amelioration of the lower and upper bounds as a function of CPU time when

Pareto-optimal cuts were used compared to when they were not, for a typical instance of the

problem.

3.2.1. First scenario

Because this scenario relaxes single-sourcing constraints and fixed costs on transportation

modes, variables Y k
od and Zm

od as well as constraints (7) and (8) are not required and can be

omitted from the model.

As a first step in our experiments, we wanted to evaluate the impact of the valid inequalities

(37) and (38)–(43) on solution time. For the CPLEX branch-and-bound approach, this is
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Fig. 1 Values of lower (LB) and upper (UB) bounds as a function of CPU time

shown in Table 3. For the smallest eight instances, the columns under the heading Basic
model report the CPU time (in minutes) needed to identify an integer solution within 1% of

optimality, the number of branch-and-bound nodes explored and the (approximate) integrality

gap for the model (1)–(13). The next two groups of columns report similar statistics when

the constraints (37) are included either by themselves or together with (38)–(43). Column #
indicates the total number of valid inequalities added to the model. The gaps reported may

slightly overestimate the true integrality gaps because the search is stopped as soon as an

integer solution within 1% of optimality is identified.

The results show that in most cases constraints (37) strengthened the LP relaxation and

considerably reduced the difficulty of the problem. Constraints (38)–(43) also positively

affected performance, dramatically reducing the number of branch-and-bound nodes that

Table 3 Impact of valid inequalities

Basic model With (37) With (37) and (38)–(43)

No. CPU Nodes Gap CPU Nodes Gap # CPU Nodes Gap #

100cfv 4.40 2,794 66.61 1.18 732 47.51 162 0.03 13 47.36 225

100cfV 3.66 1,365 50.52 1.43 816 35.73 162 0.04 21 35.64 225

100cFv 34.44 16,653 69.08 84.57 38,801 50.11 171 0.04 12 50.03 234

100cFV 11.29 3,374 50.16 35.93 16,536 36.36 171 0.06 21 36.19 234

100Cfv 435.56 127,591 48.56 149.47 37,693 33.56 341 0.14 21 33.45 404

100CfV 177.71 51,864 36.50 21.95 5,239 25.21 341 0.15 21 25.32 404

100CFv >720 >2E5 >720 >2E5 269 0.57 111 40.26 332

100CFV 174.03 48,574 32.06 18.50 5,213 22.46 269 0.46 91 22.74 332

Springer



76 Ann Oper Res (2006) 144:59–82

Table 4 Computational statistics for the first scenario

Benders decomposition CPLEX

Benders cuts CPU Time CPU Time

No. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 34 2 32 4 0.02 0.03 0.01 0.03 13 47.36

100cfV 52 4 34 22 0.04 0.05 0.01 0.05 21 35.64

100cFv 32 1 28 5 0.03 0.04 0.01 0.04 12 50.03

100cFV 44 1 28 17 0.05 0.06 0.01 0.06 21 36.19

100Cfv 85 3 77 11 0.26 0.33 0.03 0.14 21 33.45

100CfV 110 3 84 29 0.36 0.43 0.03 0.15 21 25.32

100CFv 116 2 96 22 0.41 0.45 0.03 0.57 111 40.26

100CFV 159 10 117 52 0.60 0.76 0.03 0.46 91 22.74

200cfv 110 4 109 5 0.28 0.32 0.05 0.19 21 42.23

200cfV 120 8 108 20 0.37 0.47 0.04 0.30 48 34.46

200cFv 48 1 42 7 0.22 0.24 0.07 0.31 36 33.14

200cFV 78 1 60 19 0.36 0.39 0.07 0.38 41 21.11

200Cfv 87 1 83 5 0.39 0.42 0.11 0.59 60 42.81

200CfV 136 1 100 37 0.86 0.89 0.11 0.33 21 32.02

200CFv 185 1 168 18 1.97 2.06 0.17 1.00 58 38.93

200CFV 248 2 194 56 2.89 3.04 0.17 0.99 63 20.69

300cfv 64 2 62 4 0.25 0.29 0.10 0.49 50 37.90

300cfV 88 2 63 27 0.51 0.57 0.09 0.30 21 30.82

300cFv 83 2 76 9 0.66 0.73 0.16 0.79 53 33.75

300cFV 116 2 85 33 1.20 1.34 0.15 0.83 61 19.36

300Cfv 282 1 267 16 3.83 4.20 0.41 3.47 101 43.86

300CfV 308 1 227 82 6.08 6.35 0.41 2.38 101 33.03

300CFv 114 1 88 27 3.35 3.80 0.57 3.33 87 36.74

300CFV 286 4 96 194 11.16 12.04 0.52 3.41 121 17.92

needed to be explored, even though they did not further strengthen the LP relaxation. The

Benders decomposition could not solve even the smallest instances within 24 hours of CPU

time without introducing both types of valid inequalities. Consequently, these two sets were

used in all further testing.

Table 4 reports the results obtained by the Benders decomposition and CPLEX methods

for all instances. For the former approach, columns LP and MIP indicate the number of

cuts generated for the LP relaxation and the additional number of cuts generated for the

mixed-integer problem. Columns Feas. and Opt. show the total number of feasibility and

optimality cuts that were generated in the two phases. Column LP provides the CPU time (in

minutes) required to solve the LP relaxation within 0.1% of optimality while column MIP

gives the total CPU time required to find an integer solution within 1% of optimality. Since the

value of the LP relaxation is the same in both approaches, we only report the (approximate)

integrality gaps for the CPLEX. Of course, the cost of the solutions identified by the two

solution methods (and the resulting integrality gaps) may differ by at most 1% because of

the heuristic stopping criterion.

The results show that the performance of the two approaches is somewhat comparable.

The average total CPU time is 0.86 minutes for CPLEX and 1.64 minutes for Benders

decomposition. Interestingly, the latter approach is affected by the magnitude of the variable

costs as a percentage of the total costs. When subproblem costs are larger, more information
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must be transferred to the master problem in the form of Benders cuts. This phenomenon

is reflected by larger computation times and a larger number of optimality cuts for the ‘V’

problems when compared to their ‘v’ counterparts.

It is apparent from these results that the Benders decomposition method benefits from

generating an initial set of cuts by solving the LP relaxation. Although the integrality gaps

are rather large, only a few iterations need to be performed in the second phase of the algorithm

when the Benders master problem must be solved as an integer program. This is explained

by the fact that the cuts generated in the first phase provide a good approximation of the

feasible region of the integer master problem.

3.2.2. Second scenario

In this scenario, Y k
ok variables are added to the formulation together with constraints (7) and

(16) to impose the single-sourcing of every customer demand.

Again, we first evaluated the impact of introducing additional valid inequalities. Table 5

compares the results obtained by the simplex-based branch-and-bound approach with and

without constraints (44)–(45). Recall that in both cases, constraints (37)–(43) were added

to the formulation. Here too, the introduction of a small number of valid inequalities had a

major impact on performance. On the larger instances, both the CPU time and the number

of nodes explored were reduced on average by a factor of 10. These constraints similarly

influenced the Benders decomposition.

For Benders decomposition, single-sourcing constraints (16) affect only the master prob-

lem. As explained in Section 2.1.2, instead of introducing these constraints at the begin-

ning of the solution process, one can first solve a relaxation of the problem obtained by

introducing variables Y k
od in the model but dropping constraints (16). All cuts generated

when solving this relaxation are valid for the restricted problem because the presence of

constraints (16) does not affect the polyhedron of the dual subproblem. In our tests, very few

iterations (i.e., often less than 5) were needed to find a solution to the restricted problem after

having solved this relaxation. As before, integrality constraints on the master problem are

added last and a few additional iterations must be performed to obtain a near-optimal integer

solution.

Table 6 presents the results obtained by both approaches for this scenario. For the Benders

decomposition, we separately report the number of cuts generated for solving the initial

relaxation (LP relaxation without single-sourcing constraints), followed by the number of

additional cuts needed to solve the LP relaxation of the restricted problem, and the number

Table 5 Impact of additional valid inequalities for single-sourcing

Basic model With (44)–(45)

No. CPU Nodes Gap CPU Nodes Gap #

100cfv 1.08 342 47.36 0.44 99 47.36 70

100cfV 0.97 311 35.64 0.15 31 36.08 70

100cFv 1.86 440 50.03 0.44 74 50.03 63

100cFV 2.05 481 36.19 0.48 84 36.19 63

100Cfv 5.46 918 33.46 0.71 67 33.46 122

100CfV 10.69 1862 24.98 0.87 95 24.95 122

100CFv 22.92 3489 40.28 2.50 265 40.45 89

100CFV 15.80 2474 22.45 2.35 241 22.51 89
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Table 6 Computational statistics for the second scenario

Benders decomposition CPLEX

Benders cuts CPU Time CPU Time

No. Rel. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 33 1 1 30 5 0.04 0.05 0.03 0.44 99 47.36

100cfV 52 1 1 31 23 0.08 0.11 0.03 0.15 31 36.08

100cFv 28 8 1 31 6 0.13 0.15 0.05 0.44 74 50.03

100cFV 36 1 1 20 18 0.10 0.11 0.05 0.48 84 36.19

100Cfv 105 2 2 96 13 0.61 0.71 0.12 0.71 67 33.46

100CfV 127 1 3 101 30 0.66 0.81 0.11 0.87 95 24.95

100CFv 110 1 1 89 23 0.66 0.80 0.15 2.50 265 40.45

100CFV 173 4 4 128 53 1.32 2.21 0.14 2.35 241 22.51

200cfv 104 2 1 101 6 0.42 0.49 0.16 2.01 217 42.26

200cfV 144 2 1 125 22 0.79 0.91 0.14 5.87 661 34.49

200cFv 52 2 1 46 9 0.59 0.72 0.31 3.45 265 33.14

200cFV 66 1 1 48 20 0.61 0.80 0.29 1.77 101 20.73

200Cfv 117 3 1 114 7 1.02 1.10 0.40 2.98 186 42.81

200CfV 142 2 1 106 39 1.57 1.65 0.42 3.20 193 31.98

200CFv 221 1 1 204 19 3.82 4.20 0.82 3.03 101 38.93

200CFV 260 3 2 206 59 5.64 6.05 0.82 2.94 101 20.68

300cfv 61 1 2 59 5 0.42 0.54 0.30 3.54 266 37.91

300cfV 93 1 2 68 28 0.80 0.94 0.29 15.23 1281 30.80

300cFv 99 1 2 92 10 1.38 1.76 0.68 5.80 252 33.56

300cFV 109 1 2 78 34 2.03 2.72 0.67 9.03 414 19.82

300Cfv 239 2 1 225 17 4.84 5.66 1.37 151.02 6275 43.83

300CfV 292 1 1 203 91 8.44 8.97 1.24 28.97 1153 32.94

300CFv 122 4 1 96 31 8.60 10.16 2.61 15.33 306 36.96

300CFV 296 10 10 105 211 25.72 46.29 2.44 17.74 388 17.78

of further cuts required to identify an integer solution within 1% of optimality. Except for

three cases (200CFv, 200CFV and 300CFV), the total CPU time to find an integer solution

within 1% of optimality was always smaller for the Benders decomposition. In addition, its

average CPU time was 4.08 minutes compared to 11.66 minutes for the CPLEX. Of course,

this difference is in part explained by the exceptionnally large CPU time for instance 300Cfv.

3.2.3. Third scenario

In this last scenario, fixed costs and capacities are imposed on all transportation modes

between warehouses and customers in addition to the previous single-sourcing requirement.

As a result, mode selection variables Zkm
od must be introduced in the formulation together

with capacity constraints (8).

As expected from the first two scenarios, valid inequalities proved to be extremely useful

in improving the performance of both solution approaches. Since transportation modes must

be chosen only between warehouses and customers, constraints (47)–(48) can be disregarded

in these experiments. Furthermore, single-sourcing implies that constraints (46) are automat-

ically satisfied in the presence of (16). Finally, constraints (49) are redundant when the valid

constraints (44)–(45) are considered, but they do, however, strengthen the LP relaxation. As

a result, our analysis of valid inequalities (46)–(50) concentrated on the latter two sets.

Springer



Ann Oper Res (2006) 144:59–82 79

Table 7 Impact of additional valid inequalities for mode selection

With (49) With (49)–(50)

No. CPU Nodes Gap # CPU Nodes Gap #

100cfv 0.63 32 43.10 935 0.62 39 38.87 1870

100cfV 0.79 45 33.62 935 0.68 47 30.25 1870

100cFv 1.07 40 45.48 1296 1.15 41 41.68 2592

100cFV 1.42 73 34.37 1296 1.06 48 31.21 2592

100Cfv 7.39 84 32.27 1761 6.46 74 23.97 3522

100CfV 15.41 248 24.93 1761 16.16 267 19.29 3522

100CFv 15.13 289 35.98 2096 31.24 620 31.76 4192

100CFV 16.66 337 21.92 2096 13.63 211 19.35 4192

In this scenario, solving the problem without any of the additional constraints required

several hours of computation, even for the smallest of the 24 instances. The addition of

valid inequalities was thus absolutely necessary to obtain good quality solutions for the

larger instances. Table 7 presents the results obtained with the additional constraints (49),

and with both (49) and (50). Constraints (49) had a considerable effect, bringing CPU

times down from several hours to a few minutes. The additional constraints (50) had a

limited (and sometimes even negative) impact on small problems but did prove to be

useful on the larger ones. They also strengthened the LP relaxation as shown by the re-

duced integrality gaps obtained. Finally, observe that there is exactly one constraint of

each type for each variable Y k
od. The main drawback of these constraints is thus their large

number. For the Benders decomposition, we experimented with a dynamic generation of

these constraints when they became violated. This did not lead to any improvement as

more than 50% of all constraints were generated in the first few iterations when the opti-

mal solution to the master problem tended to vary significantly from one iteration to the

next.

We have also considered a successively restrictive Benders decomposition approach,

where one starts by solving the relaxation obtained by dropping single-sourcing constraints

and setting the fixed cost cm
od of all transportation modes equal to 0. One then proceeds by

solving each of the more restrictive problems obtained by sequentially reintroducing these

constraint types and finally the integrality constraints on the master problem variables. Un-

fortunately, this did not prove advantageous. Because valid inequalities (49)–(50) restrict the

problem and tighten the LP relaxation, we observed that far fewer iterations were performed

when the single-sourcing and transportation mode fixed cost constraints were included right

from the start. Even though each iteration took longer, the total CPU times was slightly

reduced.

Table 8 shows comparative statistics for the two approaches. Again, Benders decomposi-

tion was on average faster than the simplex-based branch-and-bound method (22.69 minutes

compared to 28.89 minutes). In all but one case (300CfV), the CPU time to find an integer

solution within 1% of optimality was also smaller for the former approach than for the latter.

As explained above, the reduced number of iterations compared to the previous two scenarios

is a direct result of the presence of valid inequalities (49)–(50). Because these constraints

strengthen the LP relaxation, integrality gaps are also smaller in this scenario relative to

the other two. For this scenario, CPU times are sometimes very large. However, given the

complexity of the problem and the size of the instances we considered, we believe that an

investment of a few hours of computation time for a strategic planning problem is worthwhile
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Table 8 Computational statistics for the third scenario

Benders decomposition CPLEX

Benders cuts CPU Time CPU Time

No. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 23 1 20 4 0.10 0.15 0.20 0.62 39 38.87

100cfV 44 1 24 21 0.21 0.48 0.22 0.68 47 30.25

100cFv 17 1 13 5 0.15 0.25 0.45 1.15 41 41.68

100cFV 19 1 6 14 0.23 0.39 0.34 1.06 48 31.21

100Cfv 84 2 77 9 1.52 2.96 1.33 6.46 74 23.97

100CfV 87 1 57 31 1.60 3.42 1.44 16.16 267 19.29

100CFv 81 1 61 21 1.65 4.05 2.71 31.24 620 31.76

100CFV 100 2 63 39 2.43 8.13 2.56 13.63 211 19.35

200cfv 81 1 77 5 1.41 1.82 1.04 2.23 61 35.97

200cfV 73 1 52 22 1.34 2.00 0.99 2.47 82 29.80

200cFv 40 1 34 7 1.80 2.49 2.45 4.86 72 27.54

200cFV 54 1 34 21 2.23 4.03 2.52 5.82 101 18.13

200Cfv 76 1 73 4 2.84 5.11 4.83 11.40 101 33.91

200CfV 111 2 84 29 4.62 8.32 4.73 13.10 171 26.23

200CFv 186 1 172 15 18.14 27.61 9.32 48.64 321 26.64

200CFV 290 1 193 98 33.47 47.53 9.78 57.56 484 15.93

300cfv 46 2 44 4 1.55 1.92 1.80 3.49 61 29.96

300cfV 69 2 50 21 2.36 2.82 1.83 4.32 101 24.79

300cFv 87 2 81 8 5.18 6.94 4.72 7.87 71 25.36

300cFV 92 2 76 18 6.35 9.04 4.96 9.33 101 15.82

300Cfv 227 1 218 10 29.84 60.68 23.81 74.82 277 33.00

300CfV 273 1 202 72 49.80 114.93 19.86 89.40 460 25.82

300CFv 120 1 97 24 48.41 109.32 57.07 147.24 273 24.73

300CFV 136 1 101 36 56.62 120.21 56.80 140.01 358 13.86

and reasonable. This is particularly true since our approach lends itself to fast reoptimization

following small changes in the data.

3.3. Reoptimization capabilities

Since the LNDP is a strategic planning problem, for a solution methodology to be viable, it

is utterly important that it be capable of efficient reoptimization in order to perform “what-

if” analyses. Indeed, most planners generally examine several scenarios, such as comparing

different demand and cost scenarios or different types of production and distribution network

structures.

After first solving the problem with current demand levels, one might for example fix the

values of the Uo variables and reoptimize the problem assuming a 10% increase in demand.

Solving the problem again with the increased demand but leaving the Uo variables free

would then provide an estimate of how far the best solution for the current demand is from

optimality, if demand were to increase by 10%. The two reoptimizations can be efficiently

solved by Benders decomposition since the two changes involved (fixing binary variables Uo

and modifying constants a f
c ) do not affect the dual subproblem polyhedron. Indeed, fixing

binary variables to 1 affects only the master problem while increasing demand affects only

the objective function of the dual subproblem. As a result, all extreme points and extreme

Springer



Ann Oper Res (2006) 144:59–82 81

rays identified when first solving the problem are still valid and can be used to generate an

initial set of optimality and feasibility cuts for the solution process. For a simplex-based

branch-and-bound approach, however, the search for integer solutions must restart from the

first node of the tree because the changes made affect the bounds that are computed at each

node. Obviously, the basis of the LP optimal solution for the original problem can often be

used as a starting point. However, our computational experiments showed that very little time

is actually spent solving the LP relaxation.

Reoptimization capabilities are in fact extremely useful in a wide array of situations.

Other common examples are the addition of configuration constraints such as a minimum

number of plants to operate or a particular location that must be chosen to site a facility.

Reoptimization is also interesting in contexts where the user wants to impose some decisions

and let the solver optimize the rest of the network. With Benders decomposition, different

partial configurations can be tested rapidly by reoptimization. The only changes that may

require complete optimization from scratch are those that affect the cost of the flow variables

Xkm
od or the coefficients of these variables in the capacity constraints. These two types of

changes affect the constraints of the dual subproblem and, as a result, the set of extreme

points and extreme rays of the associated polyhedron. Other changes such as the modification

of fixed costs associated with binary variables and the modification of capacity levels (uo,

uk
o, gm

od, . . . ) can be handled through reoptimization.

The results presented for the second scenario have already illustrated the reoptimization

capabilities provided by Benders decomposition. Additional testing we performed with slight

variations of the problem have further indicated that the problem can often be reoptimized

in just a fraction of the total CPU time required to solve it from scratch.

4. Conclusions and extensions

This paper has introduced a new integrated formulation for the logistics network design prob-

lem and compared two solution methodologies for it—a classical simplex-based branch-and-

bound and a Benders decomposition approach. Our computational experiments showed that

the methods are competitive and that Benders decomposition is slightly more advantageous

on the more difficult problems. We also proposed several groups of valid inequalities and

highlighted the considerable performance improvement they produce in both solution meth-

ods. Furthermore, when these constraints are incorporated in the Benders decomposition

algorithm, this offers outstanding reoptimization capabilities.

We believe our results are general in nature and will remain valid independent of the

scenario chosen. The experiments we have performed show that the methodology can be

used to solve realistic instances of large size. Furthermore, the reasonable computation times

and the good reoptimization capabilities of Benders decomposition lead us to believe that

the proposed approach is applicable in contexts where solutions must be obtained quickly.

Our methodology thus represents a likely alternative to meta-heuristics such as tabu search

and simulated annealing that have also proven to be quite effective in terms of computation

time but usually do not provide a precise measure of deviation from optimality (see, e.g.,

Jayaraman and Ross, 2003; Lapierre, Ruiz, and Soriano, 2004).

The formulation presented here is flexible and can easily be adapted to handle multiple

production and distribution stages as well as multiple technology and capacity alternatives at

any given location. Future research could concentrate on extending the model and solution

method to handle the cases of dynamic (time-varying) and stochastic demand. The first exten-

sion can be handled by discretizing the planning period and introducing additional inventory
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variables in the formulation. If these linking variables are retained in the Benders master

problem, the subproblem decomposes by subperiod. The second extension can be handled

as a stochastic program with recourse in which a small set of scenarios (e.g., pessimistic,

realistic and optimistic) is considered. Benders decomposition should again be an appropriate

method for the solution of such problems.
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