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This paper deals with one-to-many-to-one vehicle routing and scheduling problems with pickups and deliv-
eries and studies the effect of various backhauling strategies. Initially, focus is given on problem instances

with clustered backhauls where all delivery customers must be visited before pickup customers. Afterward,
operational settings with mixed backhauls and varying visiting sequence restrictions with respect to the capacity
of the vehicles are examined. The proposed solution method evolves a set of reference solutions on the basis of
a novel Adaptive Path Relinking framework. The latter encompasses an adaptive multisolution recombination
procedure to generate provisional solutions based on the recurrence of particular solution attributes. On return,
these solutions are used as guiding points for performing search trajectories from initial reference solutions
via tunneling. Computational results on benchmark data sets of the literature illustrate the competitiveness
and robustness of the proposed approach compared to state-of-the-art solution methods for well-known vehicle
routing and scheduling problems. Finally, various experiments are also reported to demonstrate the economic
effect of different mixing levels and densities of linehaul and backhaul customers.
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1. Introduction
Managing the flows of spent or returned products
has become a crucial concern for modern companies
seeking to explore and integrate reverse logistics as a
viable business activity. Depending on the nature of
returned products, an alternative option is to design
combined distribution-collection systems. In this case,
the utilization of vehicles increases significantly when
merging products brought to the customers as well as
products brought back to the depot, and the vehicle
routing and scheduling plans and the flows of freights
get more effective and balanced. Improving produc-
tivity and utilization of the vehicle fleet through
“backhauling” is a common practice that appears in
many different sectors. Typical real-life paradigms can
be found in parcel services (Anily 1996), in blood
banks systems (Ganesh and Narendran 2007), and in
food and grocery distribution-collection services (Dart
1983). Therefore, in practical terms, studying such
problems definitely seems worthwhile because inef-
ficient operational planning can limit the economic
success of reprocessing end-of-life, used, recyclable,

and/or other types of returning products (Sbihi and
Eglese 2007).

Vehicle routing and scheduling problems deal with
the optimum assignment and service sequence of a
set of customer orders to a fleet of vehicles. They
have a large number of real-life applications and come
in many variants, depending on the type of opera-
tion, the time frame for decision making, the objec-
tive, and the types of constraint that must be adhered
to (Braysy et al. 2008). Furthermore, they accent in
the real-life context when temporal aspects (e.g., cus-
tomer time windows) are considered in addition to
the pure routing geographic counterpart (Repoussis,
Tarantilis, and Ioannou 2009). Finally, the objective
typically refers to the minimization of the total trans-
portation cost, expressed mainly in terms of one-
time (e.g., fleet size) and recurring costs (e.g., distance
traveled).

The focus of this paper is given on one-to-many-to-
one vehicle routing problems with both pickup and
deliveries. The term “one-to-many-to-one” denotes
that all delivery demands (shipment of products to
linehaul customers) are initially located at the depot
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and correspondingly all pickup demands (collection
of products from backhaul customers) are returned
to the depot. On the basis of a set of predefined
visiting sequence restrictions (also known as back-
hauling strategies), several models appear in the liter-
ature that embody the essence and characteristics of
dealing with both linehaul and backhaul customers
on the same vehicle routes. Among those considering
customer time windows, the most well studied are
the so-called Vehicle Routing Problem with Clustered
Backhauls and Time Windows (VRPCBTW) (Gelinas
et al. 1995) and the Vehicle Routing Problem with
Mixed Backhauls and Time Windows (VRPMBTW)
(Kontoravdis and Bard 1995). The aforementioned
problems are NP-hard in the strong because they
are natural generalizations of the well-known Vehi-
cle Routing Problem with Time Windows (VRPTW)
(Gendreau and Tarantilis 2010). Therefore, substantial
computational effort is required for determining opti-
mum or near optimum solutions even for medium
size instances.

Given a homogeneous fleet of depot-returning
capacitated vehicles, the goal is to design a set of
vehicle routes in order to satisfy the delivery and col-
lection requirements of a set of geographically scat-
tered customers. Each customer has a known demand
either for delivery (linehaul) or pickup (backhaul) and
must be serviced within a predefined time window
that models the earliest and the latest times during
the day that service can take place. As such, vehi-
cles must remain at the customer locations during
the service, and there is a waiting time if a vehicle
arrives before the customer’s earliest time window.
Finally, each customer must be visited only once by
exactly one vehicle, and the load of a vehicle must not
exceed vehicle’s maximum capacity at any time along
its route. The primary objective is to minimize the
number of vehicles required to service all customers,
and the secondary objective is to minimize the dis-
tance traveled.

There are two main backhauling strategies that
fit the above described problem setting. Consider-
ing VRPCBTW instances, all linehaul customers of
a route must be serviced before the vehicle starts
visiting backhaul customers. Besides priority, access,
security, and/or other reasons, the practical perspec-
tive behind this strategy is that the vehicle is nor-
mally loaded in a way that reflects the sequence of
delivery customers to ensure efficient unloading and
to eliminate additional rearrangements of carrying
products during customer service. Although such a
restriction eliminates potential inefficiencies, it also
reduces the possible synergies of combining pickup
and delivery customers, particularly if time windows
for pickups are early and deliveries occur late dur-
ing the planning horizon (Reimann and Ulrich 2006).

Therefore, if no negative influence of picking return
products occurs during the service of linehaul cus-
tomers, then the best alternative strategy is to relax
the restriction concerning the visiting sequence and to
allow any ordering of pickup and delivery visits that
satisfies the vehicle capacity constraint. This opera-
tional setting is captured by the VRPMBTW, in which
no a priori visiting sequence restrictions are imposed.
Aside from these two extremes, other alternatives—
less studied in the literature—are to allow the con-
trolled mixing of linehaul and backhaul customers on
the basis of the density of backhaul customers and/or
the tightness of time windows and/or the current
loading of the vehicles during the customer service.

The aim of this paper is to develop an efficient
and effective solution method for one-to-many-to-one
vehicle routing and scheduling problems with clus-
tered and mixed backhauls, including the VRPCBTW
and the VRPMBTW, as well as to study the effect of
alternative backhauling strategies based on the deliv-
ery load of vehicles. The proposed approach evolves
a set of reference solutions on the basis of a novel
Adaptive Path Relinking solution framework. Initiat-
ing from a set of diverse feasible solutions, subsets
of intermediate solutions are produced iteratively via
an enhanced path generation method. This method
incorporates a multisolution recombination procedure
to generate guiding provisional solutions based on
the recurrence of particular solution attributes. On
return, these provisional solutions are used as guid-
ing points for performing search trajectories that ini-
tiate from elite reference solutions. The underlying
relinking mechanism utilizes multiple edge-exchange
neighborhood structures for variation and also bene-
fits from tunneling through infeasible regions of the
solution space assuming that capacity and time win-
dow constraints are relaxed. To that end, locally opti-
mum intermediate solutions are selected and further
improved via a local search improvement method.
The latter treats both feasible and infeasible solutions
on the basis of a penalized cost function and incorpo-
rates computationally efficient neighborhood evalua-
tion methods.

For the evaluation of the proposed approach, com-
putational experiments are performed on the bench-
mark data sets of Gelinas et al. (1995); Thangiah,
Potvin, and Sun (1996); and Kontoravdis and Bard
(1995). Compared to the current state-of-the-art meth-
ods for the VRPCBTW and the VRPMBTW, the pro-
posed approach proved to be highly competitive,
especially on large-scale instances where the total
number of vehicles is significantly reduced. In most
cases, the best reported cumulative and mean results
are improved for most problem instances with fairly
reasonable computational requirements. Furthermore,
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in an effort to demonstrate the robustness and gener-
ality of the proposed approach, computational exper-
iments on the large-scale benchmark data sets of
Gehring and Homberger (1999) for the VRPTW are
reported. Overall, the proposed approach managed to
produce high quality solutions for all groups of prob-
lem instances, and in several cases the best reported
cumulative and mean results are also improved.
Finally, a series of computational experiments is also
performed to examine the cost profile of different
backhauling strategies and of mixing levels of line-
haul and backhaul customers, considering various
capacity and loading restrictions.

The remainder of the paper is organized as fol-
lows: §2 provides an overview of the literature for
one-to-many-to-one vehicle routing and scheduling
problems. The problem definition and notations are
given in §3. Then §4 discusses the proposed solu-
tion method and provides a detailed description of
all algorithmic components and mechanisms. Com-
putational experiments assessing the quality of the
proposed approach along with a comparative perfor-
mance analysis are presented in §5. Finally, in §6 con-
clusions are drawn and pointers for future research
are provided.

2. Literature Review
Because of its wide applicability and high complexity,
significant developments have been made toward the
design of models and optimization methods for vehi-
cle routing and scheduling problems with pickups
and deliveries (Toth and Vigo 1997; Mingozzi, Giorgi,
and Baldacci 1999; Parragh, Doerner, and Hartl
2008a, b). In particular, the literature for VRPCBTW
and VRPMBTW instances includes both exact and
approximate solution approaches. However, prob-
lem instances with more than 100 customers can
be intractably hard to be solved to optimality. For
this reason, the focus of most researchers is on
the design and implementation of metaheuristic
approaches capable of producing high quality solu-
tions within reasonable computational time limits.
However, there is much room for improvement, espe-
cially in terms of effectiveness for solving large-scale
problem instances. Below, a brief overview of solu-
tion methods proposed for the VRPCBTW and the
VRPMBTW is provided.

In the field of exact approaches for the VRPCBTW,
Yano et al. (1987) introduced the first branch-and-
bound algorithm based on real-life data. Later, Derigs
and Metz (1992) examined a problem arising in the
overnight express mail services of Federal Express
with up to 80 customers. In particular, diverse
formulations and relaxations are proposed, and a
matching based solution approach is developed and

evaluated on real-world data sets. More recently,
Gelinas et al. (1995) introduced an exact branch-
and-bound approach based on a set partitioning
formulation. A key feature of the later approach
is that resource variables (time and capacity) are
branched instead of network flow variables. To this
end, 45 problem instances with 25, 50, and 100 cus-
tomers based on Solomon (1987) VRPTW benchmark
data sets are generated, and more than half are solved
to optimality.

Kontoravdis and Bard (1995) first introduced
and implemented a Greedy Randomized Adaptive
Search Procedure (GRASP) for the VRPMBTW. Dur-
ing the construction phase, a greedy randomized
penalty-based parallel insertion construction heuris-
tic is proposed, combined with a constant size
restricted candidate list. On the other hand, the
local search phase consist of a simple iterative im-
provement scheme on the basis of 2-Opt neigh-
borhood structures. Computational experiments are
reported on 27 appropriately modified longhaul prob-
lem instances of Solomon (1987) for the VRPTW with
up 100 customers.

Thangiah, Potvin, and Sun (1996) proposed a local
search heuristic approach for the VRPCBTW. For
the construction of initial solutions, a push-forward
sequential insertion heuristic based on Solomon’s I1
construction heuristic (Solomon 1987) is introduced,
combined with a feasibility technique proposed by
Kontoravdis and Bard (1995) to confine time window
violations during the customer insertion phase. On
the other hand, the proposed iterative improvement
local search heuristic incorporates �-interchanges and
2-Opt edge-exchanges. Finally, new large-scale prob-
lem instances with 250 and 500 customers are also
introduced.

Potvin, Duhamel, and Guertin (1996) designed a
greedy route construction heuristic combined with a
genetic algorithm for the VRPCBTW. The proposed
construction heuristic operates on a sequential basis
and myopically inserts customers one by one into
the routes using a fixed a priori ordering of cus-
tomers. In particular, customers’ ordering is defined
and used as the basis during route construction in
order to select customers for insertion that minimize a
weighted sum of distance increase and service delay.
The genetic counterpart of the proposed scheme aims
to identify orderings that will produce good routes.
Later, Duhamel, Potvin, and Rousseau (1997) pro-
posed a tabu search metaheuristic algorithm for the
VRPCBTW, considering as secondary objective the
minimization of the total schedule time (i.e., travel-
ing times, service times, and waiting times). Initial
solutions are generated via a modified savings-based
(Clarke and Wright 1964) construction heuristic, and
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the solution space is explored on the basis of 2-Opt,
Or-Opt, and Swap edge-exchange structures.

Reimann, Doerner, and Hartl (2002) proposed an
insertion based ant colony optimization method for
the VRPCBTW. Solutions are generated iteratively
based on pheromone information, using a sequen-
tial insertion based construction heuristic, and the
local search improvement phase consists of special
3-Opt and Swap operators. Pheromone information is
updated depending on the trail persistence and on the
number of elitist solutions. More recently, Reimann
and Ulrich (2006) proposed a similar approach for
solving the VRPCBTW and the so-called mixed
VRPBTW. In particular, two parameters are intro-
duced in order to associate some cost components
with respect to the mixing of pickups and deliver-
ies on the same vehicle route. The first represents
a threshold and determines the percentage of free
capacity required such that a pickup is allowed,
whereas the second constitutes a penalty and deals
with the increase in the service time for deliveries,
once pickups have been made by a vehicle. It is also
worth mentioning that comparisons among different
backhauling strategies are also reported.

Hasama, Kokubugata, and Kawashima (1998) and
Zhong and Cole (2005) proposed local search meta-
heuristic approaches for solving the VRPCBTW and
the VRPMBTW. In particular, Hasama, Kokubugata,
and Kawashima (1998) introduced a simulated
annealing-like approach based on a string model. The
latter expresses each solution as a sequence of charac-
ters (string) that implies the routing schedule for each
vehicle. Zhong and Cole (2005) presented a Guided
Local Search (GLS) approach. The main idea is to
construct an initial infeasible solution and then apply
GLS in an effort to restore feasibility as well as to
improve the solution quality. During local search, sev-
eral moves are applied cyclically, and a best-accept
strategy is followed. The augmented objective func-
tion is based on constraint violations and a section
planning technique that is used to divide each route
into sections. The proposed penalty function depends
on the distance between subsequent customers and
the vehicle’s waiting times.

Finally, Ropke and Pisinger (2006) presented a uni-
fied Large Neighborhood Search (LNS) metaheuristic
algorithm for solving a wide range of vehicle routing
problems with backhaul customers, including among
others the VRPCBTW and the VRPMBTW. The pro-
posed LNS framework consists of six removal and
three insertion operators, which compete to modify
the current solution. To that end, an adaptive layer
controls stochastically the selection of operators with
a bias toward its past performance, and at each iter-
ation the new modified solution is evaluated and
accepted according to a probabilistic criterion.

As mentioned earlier, one-to-many-to-one vehi-
cle routing and scheduling problems generalize the
VRPTW. The latter is one of the most intensively
studied NP-hard combinatorial optimization prob-
lems. Many successful approaches for the VRPTW are
population-based and typically involve local search
improvement methods based on edge-exchange
neighborhood structures. Furthermore, it is common
to employ two distinct stages, dedicated to the mini-
mization of the fleet size and then the distance trav-
eling cost, respectively. However, few of the current
state-of-the-art methods stand out in terms of sim-
plicity and flexibility and there is an evident lack of
efficient solution approaches with a wider applica-
bility toward rich extensions of the VRPTW combin-
ing multiple features (Gendreau and Tarantilis 2010).
Furthermore, some approaches are very intricate
and largely rely on specific problem-tailored proce-
dures and instance-specific neighborhood-evaluation
procedures.

In an effort to contribute toward these issues
and gaps, this paper presents a solution frame-
work broadly applicable to a large variety of prac-
tical settings and different variants of one-to-many-
to-one vehicle routing and scheduling problems.
From the methodological viewpoint, the proposed
approach introduces few user-defined parameters—
compared to other approaches—and does not incorpo-
rate complex spatiotemporal decomposition schemes
and heuristic restriction procedures to accelerate the
neighborhood search. Although these mechanisms
may have a strong impact on the efficiency and scala-
bility towards large-scale problem instances, in many
cases they are hard to implement for practical appli-
cations and heavily rely on the underlying structure
of the problem instances (Gendreau and Tarantilis
2010). Finally, another aspect of the proposed frame-
work is that we treat the fleet size as a decision vari-
able, whereas other approaches set a fleet size limit
and restart the search from scratch—after decrement-
ing the number of vehicles—if no feasible solutions
are found.

3. Problem Definition and Notation
Following the notation provided by Bent and
van Hentenryck (2004) for the VRPTW, one-to-many-
to-one vehicle routing and scheduling problems can
be defined on a complete directed graph G = 4V 1A5
with a set of nodes V 2= 809∪ 8n+m+ 19∪ L∪ B and
a set of arcs A= 84i1 j5 ∈ V ×V 2 i 6= j9, where the sub-
sets L = 811 0 0 0 1n9 and B = 8n + 11 0 0 0 1n + m9 corre-
spond to the linehaul and backhaul customer subsets.
To that end, each node (customer) i ∈ V \801n+m+ 19
is associated with a demand di to be delivered or
a demand pi to be collected; a service time si; and a
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time window 6ei1 li7, where ei and li represent the ear-
liest and latest allowable arrival times, respectively.
Note that di > 0 and pi = 0 for all customers i ∈ L,
and similarly dj = 0 and pj > 0 for all customers j ∈ B.
Nodes 0 and n+m+1 represent the depot (with ficti-
tious demands and service times all equal to 0 as well
as a time window 6e01 l07), where K identical vehicles
with a given capacity Q are stationed. Each vehicle
incurs a Euclidean travel cost cij ∈�+ if it traverses the
arc 4i1 j5 ∈ A. Without loss of generality, we assume
that the cost matrix 6cij 7 satisfies the triangle inequal-
ity (i.e., cij +cju ≥ ciu) and can be also used to measure
the travel time tij from i to j (i.e., cij = tij ∀ 4i1 j5 ∈A).

A vehicle route (or route for short) starts from
the depot, visits a number of customers at most
once, and returns to the depot. Let �01v11 0 0 0 1 vu1n+

m + 1� be a sequence of customers, where all vi

are different; the travel cost of this route r , denoted
by tr , is the cost of visiting all of its customers,
i.e., tr =

∑u
i=0 cvivi+1

(where v0 = 01vu=1 = n+m+ 1),
if the route is not empty and is 0 otherwise. To that
end, a solution s (or routing plan) is a set of routes
8r11 0 0 0 1 rk9 (k ≤ K) visiting every customer exactly
once; i.e.,

⋃k
i=1 ri = L ∪ B and ri ∩ rj = � 41 ≤ i1

j ≤ k5. Note that a routing plan assigns a unique
successor i+ and predecessor i− to every customer
i. Furthermore, for simplicity our definitions assume
a single pair of the depot nodes 0 and n + m + 1;
however, multiple copies are needed, one per vehicle
route, to evaluate all subsequent properties.

A route is called feasible if both of the time window
and capacity constraints are satisfied. Regarding the
former, vehicles must arrive at customers before the
end of the time window li. They may arrive early, but
they have to wait until time ei to be serviced. Given
that e0 represents the departure time of all vehicles
from the depot, the departure time �i of customer i is
defined recursively as follows:

{

�0 = 01
�i = max4�i− + ci−i1 ei5+ si ∀ i ∈ L∪B0

(1)

The earliest service time of customer i, denoted by ai,
is defined as follows:

ai = max4�i− + ci−i1 ei5 ∀ i ∈ L∪B0 (2)

A routing plan satisfies the time window constraint
for customer i if ai ≤ li. Similarly, the earliest arrival
time a4r5 of a route is given by �vu

+ cvuvn+m+1
, where

vu is the last customer of the route. Therefore, a rout-
ing plan s satisfies the time window constraint for
the depot if a4r5 ≤ l0 ∀ r ∈ s. On this basis, the latest
arrival time zi for customer i can be defined recur-
sively as follows:

{

z0 = l0
zi = min4zi+ − cii+ − si1 li5 ∀ i ∈ V \8090

(3)

Regarding capacity constraints, a route is capacity
feasible if the accumulated load at any of its cus-
tomers along the route does not exceed the vehi-
cle’s maximum capacity. Let hi and gi denote the
delivery and pickup loads carried immediately after
the service of customer i, respectively. Observe that
h0 and gn+m+1 represent the total delivery demand
∑u

i=0 di and the total pickup demand
∑u

i=0 pi of route r .
Given that a vehicle returns to the depot with zero
delivery loads, hi of customer i can be defined recur-
sively as follows:

{

hn+m+1 = 01
hi = hi+ + di+ ∀ i ∈ V 0

(4)

In a manner similar, a vehicle departs from the depot
with zero pickup loads; therefore, gi of customer i is
defined recursively as

{

g0 = 01
gi = gi− + pi ∀ i ∈ V 0

(5)

The capacity constraint for customer i is satisfied if
hi + gi ≤ Q. However, in cases where restrictions on
the mixing level of backhaul and linehaul customers
are imposed, relevant to the delivery load of a vehicle,
a routing plan satisfies the visiting sequence restric-
tions if hj < �Q ∀ j ∈ B, where the threshold parameter
� (0 ≤ � ≤ 1) enforces an upper bound on the deliv-
ery load such that a pickup is allowed. Observe that
this restriction is redundant if � = 1 (case of mixed
backhauls), whereas backhaul customers (if any) must
be visited after linehaul customers (if any) along each
route if � = 0 (case of clustered backhauls).

Let qi denote the vehicle’s delivery load slack
of customer i. If a route r contains only linehaul
customers, then qi is Q − h0 ∀ i ∈ r . However, if both
linehaul and backhaul customers are present with
predefined mixing restrictions, then qi can be recur-
sively defined with respect to the first encountered
backhaul customer u along the route as follows:

qi =











Q−h0 0 ≤ i < u1

min4�Q−hi1Q−h05 i = u1

min4qi−1Q−hi − gi5 i > u0

(6)

Similarly, let bi denote the pickup load slack of
customer i. If a route contains only backhaul cus-
tomers, then bi =Q−gn+m+1 ∀ i ∈ r . On the other hand,
if a route contains both linehaul and backhaul cus-
tomers with delivery load based mixing restrictions
and given that dn+m+1 = Q − gn+m+1, then bi can be
recursively defined as follows:

bi =











min4bi+1Q−hi − gi5

if hi ≤ �Q1

0 otherwise1
∀ i ∈ V 0 (7)

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Tarantilis, Anagnostopoulou, and Repoussis: Vehicle Routing and Scheduling with Product Returns
6 Transportation Science, Articles in Advance, pp. 1–24, © 2012 INFORMS

On the basis of the above, a routing plan s =

8r11 0 0 0 1 rk9 is feasible if the capacity and the time win-
dow constraints defined earlier are satisfied for each
route. The total travel distance of s is defined as f 4s5=
∑k

r=1 t4r5. Following earlier works of the literature,
the goal is to find a feasible solution that minimizes
the number of routes �s� (primary objective) and, in
case of ties, the total distance traveled f 4s5 (secondary
objective).

4. Adaptive Path Relinking
4.1. Solution Framework
This section describes the proposed Adaptive Path
Relinking (APR) for solving one-to-many-to-one vehi-
cle routing and scheduling problems with clustered
and mixed backhauls. APR is a population-based
approach that aims to evolve monotonically a so-
called reference set of elite solutions by means of
exploring trajectories between these solutions via Path
Relinking (PR; Glover 1999). For this purpose, a fairly
simple and flexible PR solution framework is devel-
oped that incorporates novel methods capable of
tracking promising solution components, constructing
combinations of multiple elite solutions, and improv-
ing the quality of intermediate solutions encountered
during PR via local search.

Based on the expectation that high quality solutions
have common characteristics (e.g., small inner cus-
tomer distances) and features (e.g., identical permu-
tation of customers; Tarantilis 2005), a path between
two solutions in a neighborhood space will yield new
intermediate solutions that share a significant amount
of attributes with them in varying “mixes” (Glover
1999). In particular, upon starting from an initial solu-
tion, a necessary condition to generate the desired
paths is to apply local moves that progressively intro-
duce attributes contributed by a guiding solution.
To that end, multiparent path generation possibilities
also emerge and enhance the opportunity to exploit
information contained in the union of elite solutions.
For example, as described in Glover (1999) one may
consider the combined attributes (possibly weighted)
provided by a set of guiding solutions that will deter-
mine which local moves are given higher priority dur-
ing the path generation process.

On this basis, the proposed APR framework de-
parts from traditional PR implementations found in
the literature and takes into account multiple solu-
tions simultaneously as a foundation for creating
combinations. The main effort is first to identify,
select, and combine systematically promising solu-
tion components encountered during the search and
second to extrapolate the search process beyond the
regions spanned by the elite solutions maintained
within the reference set. For this purpose, provisional

solutions are generated at each iteration that are used
as “guiding” points for performing search trajecto-
ries/paths from elite “initial” solutions of the refer-
ence set. This is done by ruining and reconstructing
part of a “parent” reference solution using promising
building blocks contained in the union of elite solu-
tions maintained within the reference set. Clearly, one
may expect that the paths generated via this mul-
tiparent combination scheme “relink” points in the
solution space in ways not achieved in the previous
search history.

The overall framework is displayed in Algorithm 1.
Starting from an empty reference set R, the diversifi-
cation generation method described in §4.2 is applied.
The aim is to provide a good initial sampling of
promising areas of the solution space as well as to
ensure that the solutions forming the initial reference
set are diversified. Subsequently, the core APR frame-
work is triggered that manipulates R by means of
exploring trajectories. At each iteration, a provisional
“guiding” solution sg is generated (one per reference
solution st) via the adaptive recurrence-based ruin-
and-recreate method presented in §4.3. Subsequently,
an initial solution si is selected, and the path-relinking
mechanism described in §4.5 is applied. Among the
sequence of feasible and infeasible intermediate solu-
tions su generated during the relinking process, a sub-
set G of them is selected and further improved via the
local search improvement method described in §4.6.
On return, the best encountered feasible or infeasi-
ble solution competes to update the reference set.
This process is controlled via the reference set update
method presented in §4.7.

Algorithm 1 (Adaptive Path Relinking)
Input: �, v, z, and pc //User-defined parameters
Output: Best encountered feasible solution s∗
1: R← Diversification Generation Method4�1v1z5
2: while termination conditions do
3: for all reference solutions st ∈R do
4: G← �

5: sg ← Construction of Guiding
Solution4st1 pc1R5

6: si ← Selection of Initial Solution4R5
7: G← Path Generation Method4si1 sg1�5
8: for all intermediate solutions su ∈G do
9: sm ← Local Search4su1v1z5

10: if sm is feasible and improves s∗ then
11: s∗ ← sm
12: end if
13: R← Update Reference Set4sm5
14: end for
15: end for
16: end while

The above described APR framework introduces
four main user-defined parameters, namely the size �

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Tarantilis, Anagnostopoulou, and Repoussis: Vehicle Routing and Scheduling with Product Returns
Transportation Science, Articles in Advance, pp. 1–24, © 2012 INFORMS 7

of the reference set R, a variation parameter pc
(see §4.3), and parameters v and z that are used to
regulate the local search (see §4.6). The termination
condition we adopt (Line 2 of Algorithm 1) enforces a
maximum allowed CPU time consumption limit that
varies with respect to the total number of customers.
Other alternatives are to set a maximum number of
inner APR iterations (Line 3 of Algorithm 1) and/or
to break the execution if R has not been updated with
the completion of a full inner iteration.

4.2. Diversification Generation Method
The goal is to initialize the reference set R with a col-
lection of diverse solutions. For this purpose, a par-
allel insertion-based construction heuristic algorithm
is utilized, coupled with a local search improvement
method (see §4.6). The latter is applied for further
improvement, and the new local optimum solution
is added to R. The oscillations between new solution
construction and local search are repeated until R is
filled with � solutions.

Given an initial set of one or more vehicle routes, an
unrouted customer u is inserted between customers i
and j of the current partial constructed route(s) that
minimally increases the traveling distance; i.e., ciu +

cuj − cij . Let �ij1u denote the insertion cost of u. For
every feasible insertion position into a route r of a
partial solution � , the minimum insertion cost �r1u =

mini1 j∈r �ij1u is found. The overall minimum insertion
cost �r ′1u corresponds to the minr∈� �r1u and denotes
the best insertion position of u. The above solution
construction process is repeated until all customers
are assigned to vehicles. If at some iteration an unas-
signed customer cannot be inserted into any of the
existing set of routes, a new “seed” customer is iden-
tified, and a route is initialized. The “seed” customers
are determined such that the most time constrained
are considered first (i.e., minimum time gap between
the latest service time and the time needed to travel
from the depot li − c0i).

In an effort to ensure an adequate level of diversity,
during the construction process we forbid the forma-
tion of consecutive triads of customers that appear
in solutions added previously to R. More specifically,
whenever the insertion of a customer u between cus-
tomers i and j is considered, along with feasibility we
also examine whether both arcs 4i1u5 and 4u1 j5 are
traversed—in this particular order and direction—in
any of the reference solutions. If this is the case, we
exclude from further consideration this insertion posi-
tion for u. Note that this accessibility restriction is not
applied during the local search improvement phase;
however, we observed that a good sampling of the
solution space is nevertheless achieved. Algorithm 2
provides an overview of the proposed Diversification
Generation Method.

Algorithm 2 (Diversification Generation Method)
Input: �, v, and z
Output: Initial reference set R
1: R← �

2: while �R�<� do
3: s ← �

4: while s is not complete do
5: for all unrouted customers u do
6: for all routes r ∈ s do
7: for all accessible and feasible insertion

positions i1 j ∈ r do
8: �ij1u ← ciu + cuj − cij
9: end for

10: �r1u ← mini1 j∈r �ij1u

11: end for
12: if maxr∈s �r1u = 0 then
13: Initialize a route with a new “seed”

customer
14: end if
15: end for
16: u′ ← minuys1 r∈s �r1u

17: s ← s ∪ 8u′9
18: end while
19: sm ← Local Search4s1v1 z5
20: R←R∪ 8sm9
21: end while.

4.3. Construction of Provisional Guiding
Solutions

All solutions of the reference set R are selected one
by one, and provisional guiding solutions are pro-
duced (one per parent reference solution) via a novel
ruin-and-recreate scheme. The main effort is to recon-
struct part of a parent reference solution using for this
purpose building blocks often encountered in other
reference solutions. In particular, given a parent ref-
erence solution, a set of customers that seems to be
“misplaced” is initially removed (see §4.3.1) using an
adaptive threshold criterion in a probabilistic fashion.
Next, the partially ruined solution is reconstructed
by inserting the previously removed customers in
“promising” high priority insertion positions with
some probability (see §4.3.2). Observe that compared
to traditional evolutionary algorithms, this approach
encompasses both recombination and mutation mech-
anisms through the exchange of solution components
from multiple solutions and the partial reconstruction
of parent solutions, respectively.

4.3.1. Adaptive Threshold-Based Customer Re-
moval Procedure. Various customer removal opera-
tors have been proposed in the literature, especially
in the context of LNS approaches (Pisinger and Ropke
2006). Most of them take into account spatiotempo-
ral (e.g., remove customers based on geographical
proximity) and/or cost related criteria (e.g., remove
customers that generate long detours), and some
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randomness during the selection of customers is also
introduced. Inspired by earlier works of Repoussis,
Tarantilis, and Ioannou (2009, 2010), a novel customer
removal operator has been developed that takes into
account the previous search history.

The proposed operator considers two main prop-
erties: the appearance frequency for each arc (pair of
customers) and the diversity of the solutions making
up R. Let oi1 j denote the appearance frequency of an
arc 4i1 j5 within R and T denote a so-called accep-
tance threshold. The latter is used to indicate whether
an arc can be considered as “promising” or not. The
acceptance threshold T can be simply deduced from
the cardinality of �R� times the fraction of the average
similarity M

s∗
R of reference set solutions with respect

to the best encountered feasible solution s∗ ∈ R over
the total number of arcs n+m+k contained in s∗; i.e.,

T =
M

s∗
R

n+m+ k
�R�1 (8)

where n+m is the total number of customers and k
is the total number of vehicles. The average similar-
ity of all solutions s ∈ R− 8s∗9 with respect to a solu-
tion s∗ can be calculated as follows (see also Ho and
Gendreau 2006):

M
s∗
R =

∑

s∈R−8s∗9

∑

4i1 j5∈s1 s∗
I
ss∗
ij

�R� − 1
1 (9)

where Ii1 j is an indication of whether two solutions sa
and sb exhibit arc 4i1 j5.

I
sasb
i1 j =











1 if both solutions sa and
sb exhibit arc 4i1 j51

0 otherwise0
(10)

An important feature of Equation (8) is that the val-
ues of T are self-adjusted with respect to the average
similarity among reference solutions. For example,
the larger the similarity is, the larger the threshold
value becomes. Hence, at the early stages of the search
process where large distances among solutions are
observed, T is forced to small values in order to
achieve convergence velocity. On the other hand, as
reference solutions tend to converge during the course
of evolution, T gradually increases in order to ensure
convergence reliability.

On the basis of above, the proposed customer
removal operator utilizes the values of T as a mea-
sure to indicate whether a node is “misplaced” or not.
From the implementation viewpoint, all nodes of a
given reference solution are candidates for removal
with some probability. If the appearance frequencies
of the connecting arcs of a node u between cus-
tomers i and j , i.e., oiu and ouj , are both greater than or
equal to T , then the corresponding node is removed

from the solution with a probability 1−pc; otherwise,
it is removed with a probability pc. This procedure
is repeated for all customer nodes in a sequential
fashion. Note that in our experiments, pc is set equal
to 0.75. Observe that if pc is set to 0.5, then the out-
come is a purely random customer removal scheme.

On the other hand, if the starting reference solution
is infeasible with respect to the customer’s start time
of service, then the customers with violated time win-
dows (if any) are removed. Finally, an effort is also
made to remove the surplus (if any) vehicle route(s)
in order to favor solutions with minimal fleet size.
In particular, if the total number of vehicle routes is
greater than a precalculated lower bound (for details,
see Lim and Zhang 2007, Kontoravdis and Bard 1995)
or the known lowest number of vehicles, then the cus-
tomers served by the vehicle route(s) with the small-
est cardinality are also removed.

4.3.2. Probabilistic Recurrence-Based Solution
Reconstruction Method. The removed customers are
reinserted to the partially ruined solution via the
insertion-based construction scheme described earlier.
However, instead of looking myopically to minimize
the insertion cost of unrouted customers, we also seek
to maximize the sum of appearance frequencies of the
corresponding connected edges between adjacent cus-
tomers in a probabilistic fashion. On this basis, the
proposed probabilistic recurrence-based reconstruc-
tion method can be described as follows: an unrouted
customer u is inserted between routed customers i and
j that either maximally increases the resulting sum of
appearance frequencies, i.e., oiu +ouj −oij , with a prob-
ability pc or minimally increases the distance traveled,
i.e., ciu + cuj − cij , with a probability 1 − pc. For all
unrouted customers, all insertion positions (both fea-
sible and infeasible) are examined, but in case of ties
feasible insertion positions and/or insertion positions
that cause the shortest detours are prioritized. Note
that the fleet size remains fixed, and at the end of the
reconstruction process the provisional guiding solu-
tion can be either feasible or infeasible in terms of time
window and/or capacity constraints.

Below, Algorithm 3 provides an overview of the
proposed method for generating provisional guiding
solutions.

Algorithm 3 (Construction of Guiding Solution)
Input: st , pc, and R
Output: Guiding provisional solution sg
1: T ← 4M

s∗
R /4n+m+ k55�R�

2: sg ← st
3: for all consecutive triads of nodes 4i1u1 j5

exhibited in sg do
4: if oiu ≥ T AND ouj ≥ T then
5: Remove u from sg with a probability 1 − pc
6: else
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7: Remove u from sg with a probability pc
8: end if
9: end for

10: Remove all customers with violated time
windows

11: Remove all customers served by surplus
vehicle routes

12: while sg is not complete do
13: for all unrouted customers u do
14: for all routes r ∈ sg do
15: for all insertion positions i1 j ∈ r do
16: �ij1u ← ciu + cuj − cij and

� ′
ij1u ← oiu + ouj − oij

17: end for
18: �r1u ← mini1 j∈r �ij1u and

� ′
r1u ← maxi1 j∈r �

′
ij1u

19: end for
20: end for
21: if rand40115≤ pc then u← maxu′ysg1 r∈sg

� ′
r1u′

22: else u← minu′ysg1 r∈sg
�r1u′

23: sg ← sg ∪ 8u9
24: end while.

4.4. Selection of Initial Solutions
Having generated the provisional guiding solution,
the next steps are to select an initial solution si from
R and to trigger the relinking mechanism. Regard-
ing the former, various selection strategies have been
proposed in the literature, including among others
random selection, selection of the fittest solutions
and selection of distant solutions (see also Ho and
Gendreau 2006). In the context of the proposed APR
solution framework, a random selection scheme is
applied, with equal selection probability for all refer-
ence solutions.

4.5. Path Generation Method
Staring from the initial solution si, the proposed path
generation method selects and applies local moves
that progressively introduce attributes contributed by
the provisional guiding solution sg , such that the
Hamming distance Hsi1sg

between si and sg is reduced.
To that end, a sequence of intermediate solutions si =
s11 0 0 0 1 s�−11 s� = sg is produced that joins si and sg . At
each iteration, the solution s� is produced from s�−1

by choosing either an inter-route 2-Opt or an intra-
route 0–1 Relocate (equal selection probability) local
move that decreases the most (best-accept strategy)
the corresponding distance Hs�1 sg

. In case of ties, the
local move with the lowest distance traveling cost
is applied.

There are various ways to express the Hamming
distance Hx′1x′′ between two solutions x′ and x′′.
Herein, we measure the amount of common arcs

(also known as the broken pairs distance) that can be
expressed as follows:

Hx′1x′′ =
∑

4i1 j5∈x′1x′′

Ix
′x′′

ij 1 (11)

where Ix
′x′′

ij is the binary indicator defined in (10).
To that end, given a provisional guiding solution sg ,
the solution s with the minimum Hs1 sg

1 ∀ s ∈ R is
selected as the initial solution.

Basing the relinking process on oscillations between
different types of edge-exchange structures provides a
useful variation. Furthermore, the proposed relinking
mechanism also benefits from tunneling. In particular,
time windows and capacity constraints are relaxed,
and infeasible solutions are also accepted as inter-
mediate solutions. Observe that tunneling may offer
a chance to reach solutions that might otherwise be
bypassed.

Finally, given the sequence of intermediate solu-
tions, a subset G is selected for further improvement
via local search. Overall, a total of �/4 interme-
diate solutions is selected, plus the guiding provi-
sional solution, and added to the subset. To that end,
both feasible and infeasible solutions are candidates
for selection. For this purpose, we divide the gen-
erated path into equal sized sections (i.e., 4Hsisg

/�),
and we select the locally minimum solutions from
each section. Among feasible and infeasible interme-
diate solutions, the feasible solution with the mini-
mum number of vehicles and distance traveling cost
is chosen, whereas among infeasible solutions the one
that minimizes the penalized cost (as defined later in
Equation (12)) with the least number of vehicles is
selected.

4.6. Local Search Improvement Method
As mentioned earlier, a subset G of solutions gener-
ated during the path generation method is selected
and further improved by means of a local search
improvement method. For this purpose, a tabu search
based short-term memory local search algorithm is
employed. In broad terms, the proposed local search
scheme seeks to explore the solution space S by mov-
ing at each iteration from a solution s to the best
admissible solution s′ in a subset ìy4s5 of a neighbor-
hood structure y. The short term memory records the
most recently visited solutions and prevents revisiting
them for a predefined number of iterations v (tabu
tenure). The tabu status of a neighboring solution can
be overridden only if predefined aspiration criteria
are met. The overall procedure iterates until some ter-
mination conditions are met and the best encountered
solution s∗ is returned.

Local search is important for the fast progression
toward high quality regions. However, it typically
consumes more than 80% to 85% of the overall
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computational effort. Therefore, high computational
efficiency is required. To that end, three aspects are
decisive for the implementation as well as the per-
formance of the above described local search scheme:
the definition of the search space; the choice of
neighborhood structures and evaluation techniques;
and the definition of tabu list, admissible solutions,
and aspiration conditions.

4.6.1. Search Space. Let a set of routes 8r11 0 0 0 1 rk9
make up solution s. If solution s is feasible, then the
search space is defined with respect to the total dis-
tance traveled of all its routes, i.e., f 4s5 =

∑k
r=1 t4r5,

and it is strictly confined over the feasible region.
On the contrary, if the starting solution s is infeasi-
ble, then the search space is defined with respect to
the total distance traveled plus the weighted sum of
time window and capacity violations. Let �D and �Q

represent the penalty coefficients, and let PD4s5 and
PQ4s5 account for time window and capacity viola-
tions, respectively. To that end, a penalized cost �4s5
is defined as follows:

�4s5= f 4s5+�DPD4s5+�QPQ4s5 (12)

In the context of the so-called soft time windows,
the amount of late arrivals can be measured as
the excess compared to the latest allowable arrival
times, e.g., max8ai− li109. A more efficient approach—
proposed recently by Nagata, Braysy, and Dullaert
(2010) and further elaborated by Vidal et al. (2011)—
is to pay a so-called “time-wrap” to reach the end of
the time window, upon a late arrival to a customer.
In particular, if a vehicle arrives late at a customer u
(i.e., au > lu), the vehicle travels back in time to lu to
start the service without delay, but at the expense of
paying a penalty au − lu. Observe that time wraps are
symmetric to waiting times, although waiting times
are not penalized (Vidal et al. 2011). To that end,
when moving from customer i to i+1, the time-wrap
�i1 i+1 is given by max8ai + si + cii+1 − ai+1109. There-
fore, the time-wrap use �4r5 of a route r—that serves
a sequence of customers �01v11 0 0 0 1 vu1n + m + 1�—
can be defined as the sum of the penalties the vehicle
must pay to service all customers and to arrive at the
depot without delay; i.e., �4r5 =

∑u
i=0 �vivi+1

. To that
end, PD4s5 can be expressed as follows:

PD4s5=

k
∑

r=1

�4r50 (13)

Regarding capacity constraints, various types of
violations may occur because of loading and mix-
ing level restrictions between linehaul and backhaul
customers. At first, the total delivery and the total
pickup demands of a route may exceed the vehicle
capacity. Let h4r5 and g4r5 represent the total delivery

demand
∑u

i=0 di and the total pickup demand
∑u

i=0 pi
of route r . The excess delivery and pickup demand
of the route as a whole with respect to the vehicle
capacity can be expressed as max801h4r5 − Q9 and
max801g4r5−Q9, respectively. Another type of capac-
ity violation occurs when the vehicle’s carrying load
along the route, i.e., hi + gi, exceeds the vehicle’s
capacity. Let d4r5 denote the sum of the excess load
during the customer service; i.e.,

d4r5=

u
∑

i=1

max8hi + gi −Q1090

Finally, capacity violations may also occur because
of mixing restrictions between linehaul and backhaul
customers; i.e., hj > �Q during the service of back-
haul customers along the route. Let us define �4r5 the
sum of excess delivery load due to visiting sequence
restrictions as �4r5 =

∑

i∈B∩r max8hi − �Q109. To that
end, PQ4s5 can be defined as follows:

PQ4s5=
k
∑

r=1

{(

max801h4r5−Q9+max801g4r5−Q9

+d4r5+�4r5
)}

0 (14)

Penalized cost functions of the above form can be
applied for the controlled exploration of both feasi-
ble and infeasible regions. As reported by Vidal et al.
(2011) and Hashimoto and Yagiura (2008), such an
approach may enhance the performance of the search
process. However, in the context of one-to-many-to-
one vehicle routing and scheduling problems, the
evaluation of penalties for capacity violations is more
demanding compared to time window violations, and
significant effort may be required to restore feasibil-
ity for problem instances with many backhaul cus-
tomers and high rates of capacity utilization. For this
reason, once the feasibility of an infeasible solution is
restored, we don’t allow the search to enter again the
infeasible region. To that end, it is worth highlighting
that the proposed penalized cost function is broadly
defined and can be directly applied to problem vari-
ants with and without time window and route dura-
tion restrictions as well as with and without the
presence of both pickup and delivery customers.

Finally, an important issue are the settings for the
penalty coefficients �D and �Q. Nagata, Braysy, and
Dullaert (2010) examined a range between 0.01 and
100 for both of them and conclude that values equal
to 1 ensure a consistent performance. On the other
hand, Vidal et al. (2011) initially select small values,
and they consider two readjustment options by fac-
tors of 10 and 100 if a solution remains infeasible.
In the proposed local search improvement method,
we adopt a similar self-adjustment scheme that works
as follows: initially, the penalty coefficients are glob-
ally set to 1. As long as the incumbent solution
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remains infeasible, and no improvement is observed
with respect to the penalized cost, the coefficients are
increased at each iteration by a factor of 10; however,
they are reinitialized to 1 whenever a new local opti-
mum is found during the local search process.

4.6.2. Neighborhood Structures, Feasibility
Checks, and Evaluation Methods. As mentioned
earlier, given the allowed set of neighbors ìy(s), the
best admissible neighbor s′ (i.e., mins′∈ìy4s5

8�4s′59)
replaces the current solution s at each iteration of
the local search. To that end, the neighborhood
structures y used within the proposed implemen-
tation are based on traditional edge-exchange local
moves, namely intra- and inter-route 2-Opt, 1–0
Relocate, and 1–1 Exchange (Kindervater and Savels-
bergh 1998). Intra-route 2-Opt reverses the visiting
sequence of a segment 4vr

i 1 0 0 0 1 v
r
j 5, whereas inter-

route 2-Opt∗ swaps two segments 4vr
i 1 0 0 0 1 v

r
n+m+15

and 4vr ′

i′ 1 0 0 0 1 v
r ′

n+m+15, both involving the ending
depot. On the other hand, 1–0 Relocate and 1–1
Exchange swap two disjoint segments 4vr

i 1 0 0 0 1 v
r
j 5

and 4vr ′

i′ 1 0 0 0 1 v
r ′

j ′ 5 that contain 0 and 1 customer visits,
respectively.

The size of the above neighborhood structures
is O4n25 and involves a constant number of edge-
exchanges. During the local search, the oscillations
among them are stochastic with equal selection prob-
ability. For their evaluation, a lexicographic ordering
search is followed, coupled with feasibility as well as
gain based pruning techniques. In our case, feasibility
checks for both time window and capacity constraints
can be performed in O415 time. For this purpose, we
keep track of the vehicle’s departure time �i, the lat-
est allowable arrival time zi, the delivery and pickup
loads hi and gi, and the delivery and pickup slacks
qi and bi for each node as well as for all consecutive
sequences of nodes as dictated by the current solu-
tion. Observe that this information is sufficient to per-
form all feasibility checks in constant time.

Consider for example the insertion of a customer u
between customers i and j of a route r . The arrival
time at customer u is �i +ciu, and we first check if this
is less than or equal to lu. To that end, the new arrival
time at j is max4�i + ciu1 eu5 + su + cuj , and we check
if the difference between the new and the old arrival
time at j is less than or equal to zj . Regarding capacity
constraints, if u is a linehaul customer, then we check
if du ≤ h4r5, hi + gi + du ≤ Q and du ≤ qi; otherwise, if
u is a backhaul customer, then we check if pu ≤ g4r5,
hi + gi + pu ≤ Q, and pu ≤ bj in order to determine if
the insertion of u is feasible.

When handling edge-exchange neighborhood struc-
tures for feasible solutions, the only necessity is to
track the differences with respect to the arcs that

change state (being deleted or added) in order to eval-
uate the distance traveling cost f 4s5 of a neighbor-
ing solution s. However, when infeasible solutions are
treated according to the penalized cost function (12),
the changes of time window and capacity infeasibil-
ity must be also computed for the evaluation of local
moves. Regarding time windows, we adopt the eval-
uation procedure and the reoptimization data struc-
tures proposed in Vidal et al. (2011) to compute the
changes of time-wrap use (see Equation (13)) in O415
amortized time. On the other hand, the evaluation of
capacity infeasibility is more demanding. In particular,
it requires constant time to compute the first two terms
of Equation (14) and O4n+m5 time to determine d4r5
and �4r5. However, observe that only a part of the
route, starting from the first backhaul customer and up
to the last linehaul customer, must be actually reevalu-
ated using the data structures mentioned earlier. Thus,
in practical terms it may take almost constant time to
evaluate d4r5 and �4r5, at least for short-haul problem
instances with few customers per route.

Finally, it is unnecessary to evaluate the whole
neighborhood(s) at each iteration of the local search
process because the effect of edge-exchanges is lim-
ited to the routes they modify, which are at most two
in our case. Thus, once a local move is applied, only
the modified routes must be reevaluated, whereas the
values of unmodified routes are still valid (see also
Repoussis, Tarantilis, and Ioannou 2009). Although
this type of treatment increases the implementation
complexity, notable reductions in the overall compu-
tational time can be observed.

4.6.3. Tabu List, Aspiration Conditions, and Re-
strictions. To avoid cycling, both the forward and
reversal local move attributes, i.e., edges being added
and deleted, of the corresponding neighborhood
structure are stored within the tabu list, and we forbid
the formation of these edges for a number of itera-
tions v. The tabu status is ignored only if the incum-
bent solution is improved with respect to the feasible
or infeasible search mode. Regarding the neighbor-
hood structures, nonspatial or spatiotemporal heuris-
tic restrictions are imposed in order to reduce the
neighborhood size and to accelerate the neighborhood
evaluation process because of the mixing restrictions
between backhaul and linehaul customers. However,
we forbid the reversal of customer segments with
more than six nodes (intra-route 2-Opt), and also we
do not allow the addition of customers (inter-route
1–0 Relocate and 2-Opt) to the vehicle route with the
smallest cardinality, if the total number of vehicles
is greater than the predetermined lower bound. On
the other hand, if the incumbent solution is infeasible,
we exclude during the neighborhood evaluation local
moves between feasible routes, and we focus only on
local moves between feasible and infeasible routes.
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Below, Algorithm 4 provides an overview of the
proposed local search improvement method. Regard-
ing termination conditions, a maximum number of
iterations z without observing any further improve-
ment is considered.

Algorithm 4 (Local Search Improvement Method)
Input: s, v, and z
Output: Local optimum solution sm
1: sm ← s, zt ← 0, �D ← 1 and �Q ← 1
2: Initialize Data Structures(s)
3: while zt < z do
4: y ← Random Selection()
5: ìy4s5← Neighborhood Evaluation4s1 y5
6: s ← mins′∈ìy4s5

�4s′5

7: Update Tabu List(s1 y1v)
8: if �4s5 < �4sm5 then zt ← 0 and sm ← s
9: else zt ← zt + 1

10: Update Penalty Coefficients(�D1�Q)
11: Update Data Structures(s)
12: end while.

4.7. Reference Set Update Method
An important component of the proposed APR frame-
work is the updating mechanism of the reference
set because useful information about the structural
form of optimal solutions is typically contained in
a suitably diverse collection of elite solutions. Thus,
there must be a balance between quality and diver-
sity among the reference solutions in order to ensure
the long term evolvability of the reference set and
to guide the search process toward distant as well
as promising regions. In our case, the reference set
may contain both feasible and infeasible solutions;
however, the number of feasible solutions is always
maintained greater than or equal to the number of
infeasible solutions.

The update criteria we adopt are deterministic and
account attractiveness in terms of feasibility, number
of vehicles, traveling cost, penalized cost, and level
of similarity between solutions with respect to the
current local optimum reference solution in a hierar-
chical order. Let bf and wf denote the best and the
worst feasible solutions and binf and winf denote the
best and the worst infeasible solutions of R, respec-
tively. Depending on the feasibility status of the can-
didate solution s for insertion, the reference set update
conditions are determined as (i) a feasible solution
s replaces a feasible reference solution s′, if f 4s5 <
f 4s′5, �s� ≤ �s′� and Hs1 bf

> Hs′1 bf
, whereas in the spe-

cial case where s improves the current best, i.e., f 4s5 <
f 4bf 5 and �s� ≤ �bf �, then s replaces wf ; (ii) a feasi-
ble (or infeasible) solution s replaces a feasible (or
infeasible) reference solution s′ if �s�< �s′�; (iii) a feasi-
ble solution s always replaces an infeasible reference
solution s′ if �s� ≤ �s′�; and, finally, (iv) an infeasible

solution s replaces an infeasible reference solution s′,
if �s� ≤ �s′�, Hs1 binf

> Hs′1 binf
, and �4s5 < �4s′5, whereas

in the special case where s improves the current infea-
sible best, i.e., �4s5 < �4binf 5 and �s� ≤ �binf �, then s
replaces winf .

Finally, note that during the reference set update
procedure, the penalty coefficients for the evaluation
of the penalized cost are set equal to a large num-
ber (i.e., 1e + 3). The goal is to provide a common
basis for comparison among reference and candidate
for insertion solutions because the penalty coefficients
vary during the local search process. Observe also this
large value for the penalty coefficients aims to direct
the search toward feasible solutions.

5. Computational Results
5.1. Benchmark Data Sets and Experimental

Set Up
Computational results for vehicle routing and
scheduling problems, including VRPTW, VRPCBTW,
and VRPMBTW instances, are typically ranked ac-
cording to a hierarchical objective function. The pri-
mary objective is to minimize the total number of
vehicles, and for the same number of vehicles, the sec-
ondary objective is to minimize the total distance trav-
eled by the vehicles. However, these two objectives
can be either conflicting or complementary because
the reduction of the total number of vehicles may
either increase or reduce, respectively, the total trav-
eling distance. Thus, in order for the competition
between different algorithms to be fair, comparisons
are valid only if the above described hierarchy of
objectives is followed.

On the basis of the above, for the evaluation of
the proposed solution approach several computa-
tional experiments are performed. Most state-of-the-
art methods for the VRPCBTW adopt the Gelinas
et al. (1995) data set. The set consists of 15 prob-
lem instances with up to 100 customers. In particu-
lar, there are five categories according to the density
of customer time windows, and each category is fur-
ther divided into three different groups (i.e., A, B,
and C) according to the percentage of backhaul cus-
tomers with respect to the total number of customers
(i.e., 10%, 30%, and 50%). The Cartesian coordinates
of customers are randomly generated from a uniform
distribution. Finally, it is worth mentioning that these
problem instances have tight time windows and short
scheduling horizons.

The characteristics of the Thangiah, Potvin, and Sun
(1996) large scale data set for VRPCBTW instances are
similar. The set consists of 12 problems with 250 cus-
tomers and 12 problems with 500 customers. The
percentage of backhaul customers with respect to the
total number of customers ranges from 10% to 50%.
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Note also that the 250-node problem instances were
generated choosing the first 250 customers from the
corresponding 500-node problem instances.

Regarding the VRPMBTW, Kontoravdis and Bard
(1995) modified the long-haul problem groups R2 and
RC2 of the VRPTW Solomon (1987) data set. Each
of these sets contains between 8 and 12 100-node
problems over a service area defined on a 100 ×

100 grid, similar to those of Gelinas et al. (1995).
Linehaul and backhaul customers are selected ran-
domly. The Cartesian coordinates of customers in
group R2 are randomly generated from a uniform dis-
tribution. Group C2 has clustered customers, whereas
group RC2 contains semi-clustered customers (i.e.,
a combination of clustered and randomly distributed
customers). Contrary to Gelinas et al. (1995), these
problem instances consider long scheduling horizons,
and time windows are adjusted to allow the service
of many customers by each vehicle.

The above described benchmark data sets can be
used as a basis for evaluating both VRPCBTW and
VRPMBTW instances. As such, useful comparisons
can be made toward the effect of backhaul cus-
tomers as well as the effect of scheduling horizons.
For this purpose, computational experiments using
both Gelinas et al. (1995) and Kontoravdis and Bard
(1995) benchmark data sets are reported for problem
instances with both clustered and mixed backhaul
customers (see §§5.5 and 5.6).

Following the earlier work of Reimann and Ulrich
(2006), we study the effect of mixing linehaul and
backhaul customers on the same vehicle routes
by enforcing additional constraints relevant to the
remaining capacity of the vehicles. In particular,
a threshold parameter � is introduced that determines
an upper bound on the linehaul capacity (the remain-
ing sum of delivery demands) such that a pickup is
allowed. For example, if � is set to 0.25, then a pickup
is allowed as long as the remaining load for deliver-
ies of the vehicle is less than 25% with respect to the
maximum capacity of the vehicle. To that end, com-
putational experiments with different threshold levels
� are also reported, and the cost dimensions of differ-
ent mixing strategies are analyzed (see §5.5).

Finally, an effort is made to demonstrate the gen-
erality as well as the robustness of the proposed
APR framework, and computational experiments on
the large-scale VRPTW data sets of Gehring and
Homberger (1999) are also performed, followed by a
comparative performance analysis with state-of-the-
art solution methods (see §5.4). These data sets con-
sist of 300 problem instances divided into five groups,
i.e., G02, G04, G06, G08, and G10. The features of
Solomon’s (1987) data set are maintained; however,
the set of customers has a much larger cardinality, i.e.,
200, 400, 600, 800, and 1,000 customers, respectively.

5.2. Parameters Settings and Termination
Conditions

The proposed APR framework incorporates four user-
defined parameters: namely, the size � of the refer-
ence set R, the variation parameter pc, the tabu tenure
v, and the number of local search iterations z without
observing improvement. Based on our computational
experience, one can determine very well perform-
ing and robust parameter settings with modest effort
within reasonable value ranges. In what follows, the
effect of each parameter is discussed, and suitable
value ranges are provided.

Two parameters must be defined for the local
search improvement method. Regarding parameter v
a range between 20 and 40 is mostly used by stan-
dard tabu search implementations of the literature
for intensification search and seems to fit well for
VRPCBTW and VRPMBTW instances. On the other
hand, one may expect that large values of z (ter-
mination condition) will increase the efficiency of
the proposed local search method. However, a bal-
ance between efficiency and effectiveness is needed
because large values of z may result in excessive com-
putational time consumption. In our case, a range
between 200 and 400 was found to provide a good
compromise for problem instance with up to 100 cus-
tomers, whereas for larger problem instances values
less than 100 seem to provide consistent and robust
performance.

Critical to the global search capability of the pro-
posed solution approach is the size � of R, in terms
of convergence reliability and velocity at the cost of
the expense in computational time. Very small values
of � may not be able to handle the amount of infor-
mation included into the reference solutions, whereas
large values may enhance the performance of evolu-
tion, however, at the expense of convergence speed.
Ho and Gendreau (2006) report a maximum size of
30 solutions, whereas Glover (1999) suggests values
below 20. In our case, a range between 12 and 30 was
found to provide a good compromise for both small-
and large-scale problem instances.

Also important is the role of the variation param-
eter pc. Based on our computational experiments, an
appropriate value range is between 0.5 and 0.9. Val-
ues close to 0.9 enhance the exploitation capacity
because provisional guiding solutions tend to adhere
and incorporate more and more the solution attributes
of the reference solutions. On the contrary, as val-
ues of pc decrease this effect diminishes, and therefore
diversification is favored. In the proposed implemen-
tation, relatively large values (greater than 0.7) seem
to perform best, in combination with the relatively
strict reference set update criteria we employ that take
into account the dissimilarity among solutions.
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Table 1 Detailed Results for VRPCBTW 100-Customer Gelinas et al. (1995) Data Set

BK TPS RDH RP HKK RU APR
Problem
instance %B NV TD REF NV TD NV TD NV TD NV TD NV TD NV TD CT

R101A 10 22 11818086 RP 24 1184203 22 11831068 22 11818086 23 11811058 22 11818086 22 11818086 16
R101B 30 23 11959056 RP 25 1193002 23 11999016 23 11959056 26 11937079 23 11959056 23 11959052 68
R101C 50 24 11909084 HKK 25 1194203 24 11945029 24 11939010 24 11909084 24 11939010 24 11939010 75
R102A 10 19 11653019 RP 20 1167004 19 11677062 19 11653019 21 11698079 19 11653019 19 11653018 16
R102B 30 21 11764030 TPS 21 1177704 22 11754043 22 11750070 22 11730002 22 11750070 22 11752028 150
R102C 50 21 11745070 TPS 21 1174607 22 11782021 22 11775076 23 11772028 22 11775076 22 11775076 25
R103A 10 15 11371060 TPS 15 1137106 16 11348041 15 11387057 16 11316020 15 11387057 15 11385038 24
R103B 30 15 11390033 RP 16 1147706 16 11395088 15 11390033 18 11441000 15 11390033 15 11390032 17
R103C 50 16 11486056 ZC 17 1154901 17 11467066 17 11456048 19 11451032 17 11456048 17 11456048 73
R104A 10 11 11084017 RP 13 1122003 11 11205078 11 11084017 12 11093058 11 11084017 10 11203044 195
R104B 30 11 11154084 RP 12 1130205 12 11128030 11 11154084 13 11177093 11 11154084 11 11154084 209
R104C 50 11 11191038 RP 13 1134606 12 11208046 11 11191038 13 11140046 11 11191038 11 11194073 203
R105A 10 15 11561028 RP 17 1160704 16 11544081 15 11561028 17 11672072 15 11561028 15 11560015 151
R105B 30 16 11583030 RP 18 1164300 16 11592023 16 11583030 19 11673025 16 11583030 16 11583030 1
R105C 50 16 11710019 RP 18 1165704 17 11633001 16 11710019 17 11699031 16 11710019 16 11709066 54

MNV/MTD 17.07 11559001 18.33 11605065 17.67 11567066 17.27 11561011 18.87 11568040 17.27 11561011 17.20 15169013
CNV/CTD 256 231385010 275 24108408 265 231514093 259 231416071 283 231526007 259 231416071 258 231537001

Machine NMM 33 M PIII 900 M PIV 1.5 G — PIV 1.5 G Intel X7900 2.8 G
Runs (5 versions) 10 10 — 5 3
MCT 14 150 114 — 75 85.05
Rel. speed — ≈0.9 1 — 1 10.24
Norm. time — 1,350 1,140 — 375 2,614

Given the above value ranges, several intuitively
selected combinations were experimentally tested,
and we chose the one that yielded the best aver-
age output. In particular, the experimental results
reported in subsequent sections consider fixed param-
eters with the following settings: � = 20, v = 40,
z = 180, and pc = 0075. In order to identify statisti-
cally significant differences, three simulation runs on
an Intel® Core™ 2 Extreme X7900 at 2.80 GHz are
performed for each problem instance, unless other-

Table 2 Detailed Results for VRPCBTW 250-Customer Thangiah, Potvin, and Sun (1996) Data Set

BK TPS RP APR
Problem
instance %B NV TD NV TD CT NV TD CT NV TD CT %Dev

BHR1DO.10 10 46 4184309 49 5,160 265 46 4184408 571 46 41825045 136 −0038
BHR1DO.30 30 45 5106207 48 5,243 254 45 5106207 512 45 51033078 698 −0057
BHR1DO.50 50 49 5110701 52 5140301 406 49 5110701 531 49 51105086 345 −0002
BHR1UP.10 10 31 4105609 39 4127806 513 32 4105609 503 31 41022038 452 −0085
BHR1UP.30 30 34 4154907 41 4171502 561 34 4142708 474 34 41547084 501 −0004
BHR1UP.50 50 35 4161804 43 4193704 361 36 4161804 473 35 41649050 321 0067
BHRC1DO.10 10 32 4121106 39 4161304 395 32 4131004 500 32 41194042 524 −0041
BHRC1DO.30 20 34 4150603 41 4185202 397 34 4153404 466 34 41461034 652 −1000
BHRC1DO.50 50 34 4151309 41 4132904 560 34 4151309 458 34 41490090 610 −0051
BHRC1UP.10 10 33 4110503 40 4145309 446 33 4,137 488 33 41103047 261 −0004
BHRC1UP.30 30 35 4,538 43 4172204 372 35 4,538 459 35 41508002 435 −0066
BHRC1UP.50 50 35 4155002 41 4193603 436 35 4155805 464 35 41522018 356 −0062

CNV/CTD/CCT 443 541664000 517 571644090 41966 445 541709090 51899 443 541465015 51291
MNV/MTD/MCT 36.92 41555033 43.08 41803074 413.83 37.08 41559016 491.58 36.92 41538076 440.92

Machine NMM 33 M PIV 1.5 G Intel X7900 2.8 G
Runs (5 versions) 10 3
Rel. speed — 1 10.24
Norm. time — 4,916 13,546

wise stated. Finally, the algorithm was coded in Stan-
dard x86 C++, and a maximum allowed CPU time
consumption limit is considered, depending on the
total number of customers.

5.3. Comparative Analysis with Existing Results
for VRPCBTW and VRPMBTW Instances

Tables 1–3 summarize the results obtained on the data
sets of Gelinas et al. (1995) and Thangiah, Potvin,
and Sun (1996) for the VRPCBTW. The first line
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Table 3 Detailed Results for VRPCBTW 500-Customer Thangiah, Potvin, and Sun (1996) Data Set

BK TPS RP APR
Problem
instance %B NV TD NV TD CT NV TD CT NV TD CT %Dev

BHR1DO.10 10 58 6186002 67 7162004 3,355 58 6,868 11763 58 61819066 986 −0059
BHR1DO.30 30 58 7133702 71 8112801 3138301 59 7126203 11595 58 71358066 11203 0029
BHR1DO.50 50 60 7129407 76 8137605 3151501 60 7129407 11584 60 71311057 11233 0023
BHR1UP.10 10 54 6170207 64 7133306 31219 54 6178407 11692 54 61683005 11076 −0029
BHR1UP.30 30 57 6,991 74 8129002 4150301 57 6,991 11566 56 71078067 11789
BHR1UP.50 50 58 7121703 68 8104307 5148909 58 7121703 11548 58 71158002 11432 −0082
BHRC1DO.10 10 52 6131303 61 7109904 4132001 52 6131303 11658 52 61303025 11201 −0016
BHRC1DO.30 20 54 6181306 63 7170701 4133404 54 6181306 11530 54 61771081 11329 −0061
BHRC1DO.50 50 54 6189605 65 7177106 4132109 54 6189605 11520 54 61879067 11002 −0024
BHRC1UP.10 10 55 6146401 63 7120904 3122707 55 6146401 11591 54 61496058 11843
BHRC1UP.30 30 57 7102803 63 7196701 5124703 57 7102803 11500 55 61892066 11674
BHRC1UP.50 50 56 6196906 68 8180905 4144006 57 6186203 11296 56 61850048 932 −1071

CNV/CTD/CCT 673 821888050 803 941356060 49135702 675 821796010 181843 669 821604008 151700
MNV/MTD/MCT 56.08 61907038 66.92 71863005 4,113.10 56.25 61899068 1,570.25 55.75 61883067 1,308.33

Machine NMM 33 M PIV 1.5 G Intel X7900 2.8 G
Runs (5 versions) 10 3
Rel. speed — 1 10.24
Norm. time — 15,702 40,192

lists the authors using the following abbreviations:
BK stands for the best known results; TPS stands
for Thangiah, Potvin, and Sun (1996); RDH stands for
Reimann, Doerner, and Hartl (2002); RU stands for
Reimann and Ulrich (2006); HKK stands for Hasama,
Kokubugata, and Kawashima (1998); ZC stands for
Zhong and Cole (2005); RP stands for Ropke and
Pisinger (2006); and APR stands for the proposed
Adaptive Path Relinking method. The columns illus-
trate the total number of vehicles (NV), the total
distance traveled (TD) and the computational time
(CT) in seconds for each problem instance, and %B
denotes the percentage of backhaul customers with
respect to the total number of customers. At the
right-hand side, (%Dev) stands for the percentage
deviation with respect to the best known results.
At the middle section, mean and cumulative results
are reported. In particular, MNV, MTD, and MCT
stand for mean number of vehicles, mean traveling
distance, and mean computational time, and CNV,
CTD, and CCT stand for cumulative number of vehi-
cles, cumulative traveling distance, and cumulative
computational time. In every case, boldface indicates
new best solutions.

The bottom sections of all tables describe the
machine used, the number of runs, the relative speed
of the machine, and the normalized average com-
putational time consumption. The relative speed of
each machine is derived with respect to a Pentium
IV 1.5 GHz, using the PassMark® CPU marks (http://
www.cpubenchmark.net/cpu_list.php). To that end,
the normalized computational time is calculated from
the relative speed multiplied by the mean compu-
tational time (in seconds) and the number of runs.

It is worth mentioning that this procedure provides
an efficiency indication for each solution approach;
however, it cannot be used as a basis for direct
comparisons.

Based on the computational results reported in
Table 1, APR seems to be the best performing
approach compared to current state-of-the-art solu-
tion methods for VRPCBTW instances. In particular,
six new best known solutions are obtained, and cost
reductions up to 0.07% are reached with respect to
the current best known results. Furthermore, APR
improves the best known mean and cumulative num-
ber of vehicles over all problem instances, and the
maximum deviation from the current best known
solutions is less than 1.53% in terms of distance trav-
eled. To that end, the average results obtained over
multiple simulation runs revealed relatively small
variations (close to 0.8% in the worst case) in terms
of distance traveled and no variation in terms of the
fleet size.

Tables 2 and 3 summarize the results obtained
on the large scale VRPCBTW instances of Thangiah,
Potvin, and Sun (1996) with 250 and 500 customers,
respectively. Compared to the current best known
solutions reported in the literature, 21 new best solu-
tions are obtained out of 24 instances, with cost
reductions up to 1.71%. The maximum deviation
from the current best in the class approach of Ropke
and Pisinger (2006) is less than 0.67%. Furthermore,
APR improves the best known mean and cumulative
number of vehicles over all problem instances, and
significant reductions are obtained with respect to
the total number of vehicles on large-scale prob-
lem instances with 500 customers. Overall, the aver-
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Table 4 Detailed Results for VRPMBTW Kontoravdis and Bard (1995) Data Set

BK RP ZC APR
Problem
Instance NV TD NV TD CT NV TD CT NV TD CT %Dev

MR201 4 11256031 4 11256031 160 4 11388073 108 4 11256031 12 0000
MR202 4 11086046 4 11086046 362 4 11198099 422 4 11086046 32 0000
MR203 4 894054 4 896014 374 4 988082 544 4 894054 57 0000
MR204 4 736075 4 736075 432 4 858032 450 4 737043 42 0009
MR205 4 974026 4 974026 353 4 11172053 253 4 974026 76 0000
MR206 4 894004 4 894004 388 4 97905 406 4 893067 34 −0004
MR207 4 800079 4 800079 422 4 912069 451 4 800079 21 0000
MR208 4 716028 4 716028 431 4 764052 408 4 716028 13 0000
MR209 4 879063 4 88106 361 4 978082 516 4 877004 21 −0029
MR210 4 924056 4 924056 369 4 11061036 557 4 924056 39 0000
MR211 4 763009 4 765003 394 4 878081 692 4 763009 345 0000

CNV/CTD/CCT 44 91926071 44 91932022 41046 44 111183009 41807 44 91924042 692
MNV/MTD/MCT 4.00 902043 4.00 902093 367.82 4.00 11016064 437000 4.00 902022 62.91

MRC201 5 1134603 5 11355063 236 5 1149809 73 5 11338096 257 −0055
MRC202 4 11230024 4 11230024 171 4 11539041 493 4 11223070 158 −0053
MRC203 4 995063 4 995063 176 4 11303048 713 4 987,80 183 −0079
MRC204 4 83306 4 836089 187 4 932048 472 4 833060 76 0000
MRC205 4 11414052 4 11414052 160 4 11632004 362 4 11411019 102 −0024
MRC206 4 11231052 4 11254051 166 4 11433043 208 4 11221074 123 −0079
MRC207 4 11083033 4 11083033 169 4 1121702 599 4 11066024 56 −1058
MRC208 4 847046 4 84903 175 4 11085057 134 4 843058 234 −0046

CNV/CTD/CCT 33 81982060 33 91020005 11440 33 101642051 31054 33 81926081 11189
MNV/MTD/MCT 4.13 11122083 4.13 11127051 180.00 4.13 11330031 381.75 4.13 11115085 148,63

Machine PIV 1.5 G P 450 M Intel X7900 2.8 G
Runs 10 1 3
Rel. speed 1 ≈001 10.24
Norm. time 2,887 41 3,041

age results obtained over multiple simulation runs
revealed very small variations.

On the other hand, Table 4 summarizes the results
obtained on the benchmark data sets of Kontoravdis
and Bard (1995) for VRPMBTW instances. Note that
the lower bound for the fleet size—as reported by
Kontoravdis and Bard (1995)—is 4 for all problem
instances, and the density of backhaul customers
is 49%. The results obtained illustrate the performance
of APR compared to earlier results. In particular, new
best solutions are obtained for 9 out of 19 problem
instances, with cost reductions up to 1.58%. Regarding
the first group of problems (MR2), APR produces the
lowest known cumulative distance traveled, with a
0.09% maximum deviation from the best known solu-
tions. The figures are similar for the second group of
problems (MRC2).

Regarding computational times, APR seems to
be slower compared to other approaches for prob-
lem instances with clustered backhauls, whereas the
computational efficiency is quite similar for prob-
lem instances with mixed backhauls. However, in all
cases the reported computational times are reasonable
for practical applications. Furthermore, the proposed
APR approach seems to scale well for both medium-
and large-scale problem instances.

5.4. Comparative Analysis with Existing Results
for VRPTW Instances

Following the notation introduced earlier, Tables 5–9
summarize the results obtained for Gehring and
Homberger’s (1999) data sets. Each table is divided
into three parts. The first part refers to the different
classes R1, R2, C1, C2, RC1, and RC2, and reports
the corresponding MNV and MTD values. The sec-
ond part reports the cumulative results, i.e., CNV
and CTD, over all problem instances. The last part
describes the machine, the number of runs, and the
average CPU time in minutes (MCT), along with the
relative speed and the normalized time with respect
to a PIV 2.0 GHz machine. The authors are listed
using the following abbreviations: HY for Hashimoto
and Yagiura (2008); MB for Mester and Braysy (2005);
I for Ibaraki et al. (2008); LZ for Lim and Zhang
(2007); PR for Pisinger and Ropke (2006); DPR for
Prescott-Gagnon, Desaulniers, and Rousseau (2009);
RTI for Repoussis, Tarantilis, and Ioannou (2009);
VCGP for Vidal et al. (2011); and NBD for Nagata,
Braysy, and Dullaert (2010). In all tables, boldface
entries indicate best known results.

Compared to the best performing solution methods
for the VRPTW, APR generates competitive results,
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Table 5 Comparison of Solution Methods on Group G02 with 200 Customers

Class APR RTI DPR MB I LZ PR VCGP NBD HY

R1 18020 18020 18020 18020 18020 18020 18020 18020 18020 18020
31630021 31640011 31615069 31618068 31655024 31639060 31631023 31613016 31612036 31632085

R2 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
21930008 21941099 21937067 21942092 21958056 21950009 21949037 21929041 21929041 21967002

C1 18090 18090 18090 18080 18090 18090 18090 18090 18090 18090
21720086 21721090 21718077 21717021 21734042 21726011 21721052 21718041 21718041 21718068

C2 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
11831059 11833036 11831059 11833057 11833037 11834024 11832094 11831059 11831064 11833012

RC1 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000
31213008 31224063 31192056 31221034 31275038 31205051 31212028 31180048 31178068 31196086

RC2 4030 4030 4030 4040 4030 4030 4030 4030 4030 4030
21542029 21554033 21559032 21519079 21576012 21574010 21556087 21536020 21536022 21572055

CNV 694 694 694 694 694 694 694 694 694 694
CTD 168,681 169,163 168,556 168,573 170,331 169,296 169,042 168,092 168,067 169,070

Machine X 2.8 G PIV 3 G O 2.3 G PIV 2 G PIV 2.8 G PIV 2.8 G PIV 3 G Xe 2.93 G O 2.4 G Xe 2.8 G
MCT 27 90 53 8 3303 9302 707 804 401 33
Runs 1 1 5 1 1 1 10 5 5 1
Rel. speed 7013 1099 2026 1000 1068 1068 1099 22003 2053 2011
Norm. time 193 179 599 8 56 157 153 925 52 69

Table 6 Comparison of Solution Methods on Group G04 with 400 Customers

Class APR RTI DPR MB I LZ PR VCGP NBD HY

R1 36040 36040 36040 36030 36030 36040 36040 36040 36040 36040
81464014 81514011 81420052 81530003 81788054 81489053 81540004 81402057 81403024 81544080

R2 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000
61193075 61258082 61213048 61209094 61251054 61271057 61241072 61152092 61148057 61262043

C1 37060 37060 37060 37090 37060 37060 37060 37060 37060 37060
71201030 71273090 71182075 71148027 71302050 71229004 71290016 71170047 71175072 71213021

C2 11060 11070 11090 12000 11080 11070 12000 11060 11070 11080
31996013 31941070 31874058 31840085 31985021 31942093 31844069 31952095 31899000 31910011

RC1 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000
71968064 81088046 71940065 81066044 81471085 81005025 81069030 71907014 71922023 81017089

RC2 8040 8040 8060 8080 8060 8050 8050 8050 8040 8050
51398033 51516059 51269009 51243006 51328084 51431015 51335009 51215021 51297086 51326087

CNV 1,380 1,381 1,385 1,389 1,384 1,382 1,385 1,381 1,381 1,383
CTD 392,223 395,936 389,011 390,386 401,285 393,695 393,210 388,013 388,466 392,507

Machine X 2.8 G PIV 3 G O 2.3 G PIV 2 G PIV 2.8 G PIV 2.8 G PIV 3 G Xe 2.93 G O 2.4 G Xe 2.8 G
MCT 82 180 89 17 6606 29509 1508 3401 1602 67
Runs 1 1 5 1 1 1 10 5 5 1
Rel. speed 7013 1099 2026 1000 1068 1068 1099 22003 2053 2011
Norm. time 585 358 1,005 17 112 498 314 3,756 205 141

Table 7 Comparison of Solution Methods on Group G06 with 600 Customers

Class APR RTI DPR MB I LZ PR VCGP NBD HY

R1 54050 54050 54050 54050 54050 54050 54050 54050 54050 54050
181460074 181781079 181252013 181358068 191963056 181381028 181888052 181023018 181186024 181523042

R2 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000
121566077 121804060 121808059 121703052 121496054 121847031 121619026 121352038 121330049 121678099

C1 57030 57030 57040 57080 57050 57040 57050 57040 57040 57040
141230086 141236086 141106003 141003009 141128087 141103061 141065089 141058046 141067034 141163051

C2 17040 17040 17050 17080 17040 17040 17050 17040 17040 17040
71659020 71729080 71632037 71455083 71991070 71725086 71801029 71594041 71605007 71678049

RC1 55000 55000 55000 55000 55000 55000 55000 55000 55000 55000
161833066 161767072 161266014 161418063 171395051 161274017 161594094 161097005 161183095 161352056

RC2 11040 11040 11070 12010 11060 11050 11060 11050 11040 11050
101876039 111311081 101990085 101677046 101743003 101935091 101777012 101511086 1051886014 101841022
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Table 7 Continued

Class APR RTI DPR MB I LZ PR VCGP NBD HY

CNV 2,066 2,066 2,071 2,082 2,070 2,068 2,071 2,068 2,067 2,068
CTD 806,276 816,326 800,797 796,172 827,192 802,681 807,470 786,373 789,592 800,982

Machine X 2.8 G PIV 3 G O 2.3 G PIV 2 G PIV 2.8 G PIV 2.8 G PIV 3 G Xe 2.93 G O 2.4 G Xe 2.8 G
MCT 134 270 105 40 100 64609 1803 9904 2503 100
Runs 1 1 5 1 1 1 10 5 5 1
Rel. speed 7013 1099 2026 1000 1068 1068 1099 22003 2053 2011
Norm. time 956 537 1,186 40 168 1,090 364 10,948 320 211

Table 8 Comparison of Solution Methods on Group G08 with 800 Customers

Class APR RTI DPR MB I LZ PR VCGP NBD HY

R1 72080 72080 72080 72080 72080 72080 72080 72080 72080 72080
321053016 321734057 311797042 311918047 331275072 311755057 321316079 311311038 311492081 311978015

R2 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000
201361056 201618021 201651081 201295028 201209092 201601022 201353051 191933039 191914097 201383013

C1 75020 75020 75040 76020 75070 75040 75060 75040 75020 75020
251871064 251911044 251093038 251132027 251487055 251026042 251193013 241876038 251151083 251220058

C2 23040 23040 23050 23070 23040 23040 23070 23030 23040 23030
111594051 111835072 111569039 111352029 111860090 111598081 111725046 111475005 111447027 111689000

RC1 72000 72000 72000 73000 72040 72000 73000 72000 72000 72000
331518025 331795061 331170001 301731007 341621063 311267084 291478030 291404032 311278028 311343054

RC2 15040 15050 15080 15080 15070 15060 15070 15040 15040 15040
171036041 171536054 161852038 161729018 161666076 161992079 161761095 161495082 161484031 161828093

CNV 21738 2,739 2,745 2,765 2,750 2,742 2,758 2,739 2,738 2,737
CTD 1,404,355 1,424,321 1,391,344 1,361,586 1,421,225 1,372,427 1,358,291 1,334, 963 1,357,695 1,367,971

Machine X 2.8 G PIV 3 G O 2.3 G PIV 2 G PIV 2.8 G PIV 2.8 G PIV 3 G Xe 2.93 G O 2.4 G Xe 2.8 G
MCT 190 360 129 145 13303 1126904 2207 215 2706 133
Runs 1 1 5 1 1 1 10 5 5 1
Rel. speed 7013 1099 2026 1000 1068 1068 1099 22003 2053 2011
Norm. time 1,355 716 1,457 145 225 2,138 451 23,680 349 280

Table 9 Comparison of Solution Methods on Group G10 with 1,000 Customers

Class APR RTI DPR MB I LZ PR VCGP NBD HY

R1 91090 91090 91090 92010 91090 91090 92020 91090 91090 91090
501284056 511414026 491702032 491281048 531366010 481827023 501751025 471759066 481287098 491650082

R2 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000
291895031 301804079 301495026 291860032 291546019 301164060 291780082 291076045 281913040 291806086

C1 94010 94020 94030 95010 94050 94040 94060 94010 94010 94000
421450088 431111060 411783027 411569067 421459035 411699032 411877000 411572086 411683029 421157055

C2 29010 29030 29050 29070 29040 29030 29070 28080 29010 28080
161675010 161810022 161657006 161639054 161986046 161589074 161840037 161796045 161498061 171152020

RC1 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000
461245048 461753061 451574011 451396041 481275020 441818054 461752015 441333040 441743018 451539011

RC2 18030 18040 18050 18070 18030 18030 18030 18020 18030 18030
251075059 251588052 251470033 251063051 241904008 251064088 251090088 241131013 231939062 241696091

CNV 3,424 3,428 3,432 3,446 3,431 3,429 3,438 3,420 3,424 3,420
CTD 2,106,269 2,144,830 2,096,823 2,078,110 2,155,374 2,071,643 2,110,925 2,036,700 2,045,720 2,085,125

Machine X 2.8 G PIV 3 G O 2.3 G PIV 2 G PIV 2.8 G PIV 2.8 G PIV 3 G Xe 2.93 G O 2.4 G Xe 2.8 G
MCT 240 450 162 600 16607 1186504 2606 349 3503 167
Runs 1 1 5 1 1 1 10 5 5 1
Rel. speed 7013 1099 2026 1000 1068 1068 1099 22003 2053 2011
Norm. time 1,712 895 1,830 600 281 3,142 529 38,439 446 352
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and produces the lowest known CNV for most
problem groups with very reasonable computational
times. For problem instances with 200 customers the
same CNV is exhibited, and for problem instances
with 400 and 600 customers the best known mean and
cumulative number of vehicles is improved. Overall,
the quality of the solutions produced by APR is in
the worst case next to the best solutions reported by
Nagata, Braysy, and Dullaert (2010) and Vidal et al.
(2011) (see columns NBD and VCGP).

5.5. Effect of Backhauling Strategies and
Mixing Levels

This section studies the effect and impact of differ-
ent backhauling strategies. As mentioned earlier, the
benchmark data sets for VRPCBTW and VRPMBTW
instances can be used interchangeably for both cases.
As such, useful comparisons can be made between the
effect of backhaul customers and the effect of schedul-
ing horizons (e.g., comparison between shorthaul and
longhaul problem instances).

Tables 10 and 11 summarize the results obtained
from the application of APR on Gelinas et al. (1995)
and Kontoravdis and Bard (1995) data sets with dif-
ferent backhauling strategies. Both tables consist of
five main columns that correspond to different mixing
level restrictions by enforcing constraints relevant
to the remaining delivery capacity of the vehicles.
As mentioned earlier in §5.1, these mixing settings
depend on the choice of a threshold parameter � that
will determine a lower bound on the sum of remain-
ing delivery demands such that a pickup is allowed.
In particular, the values assumed for � are 0, 0.25, 0.50,
0.75, and 1, and each column reports the correspond-
ing number of vehicles and traveling distance. Recall

Table 10 Comparison of Different Mixing Levels on Gelinas et al. (1995) Data Set

Problem instance � = 1000 � = 0075 � = 0050 � = 0025 � = 0000

Name Group %B NV TD NV TD NV TD NV TD NV TD

R101 A 10 19 11650080 19 11650080 19 11650080 19 11667072 22 11818086
B 30 19 11650080 19 11650080 19 11650080 19 11654067 23 11959052
C 50 19 11650080 19 11650080 19 11650080 19 11655045 24 1193901
A 10 17 11486012 17 11486012 17 11486012 17 11507021 19 11653018

R102 B 30 17 11501084 17 11503077 17 11519049 18 11621022 22 11752028
C 50 17 11486012 17 11486012 17 11486012 18 11475005 22 11775076
A 10 13 11292068 13 11292068 13 11292068 14 11247059 15 11385038

R103 B 30 13 11291095 13 11291095 13 11294052 14 11239085 15 11390033
C 50 13 11291095 13 11291095 13 11291095 14 11228075 17 11456048
A 10 9 11007031 9 11007031 9 11007031 10 999071 10 11215069

R104 B 30 9 11007031 9 11007031 9 11018076 10 11027012 11 11154084
C 50 9 11007031 9 11007031 10 983098 10 11019030 11 11194073
A 10 14 11377011 14 11377011 14 11377011 14 11410018 15 11560015

R105 B 30 14 11377011 14 11377011 14 11383092 14 11434097 16 1158303
C 50 14 11377011 14 11377011 14 11383092 14 11412069 16 11709066

MNV/MTD 14.40 11363075 14.40 11363088 14.47 11365022 14.93 11373043 17.20 11569095
Cost/%Gap 2,803.75 0000 2,803.88 0000 2,811.89 0029 2,866.76 2025 3,289.95 17034

also that no a priori restrictions are imposed when �
equals 1, whereas all linehaul customers are strictly
visited before backhaul customers if � is set to 0 (see
also Tables 1 and 4).

Because of the number of vehicle changes, an alter-
native evaluation measure of the form 100MNV +

MTD is adopted in order for the competition to be
fair. To that end, the bottom section of both tables
reports the average modified cost (Cost) of each
strategy and the associated gap (%Gap) with respect
to the pure mixed backhauling strategy; i.e., � = 1. The
latter can be seen as the additional cost one has to pay
if visiting order restrictions are gradually imposed.
Finally, the second row from the bottom reports the
corresponding average results.

In all cases, the backhauling strategy that allows
the mixed order of pickups and deliveries on the
same vehicles is significantly more effective, and low
cost vehicle routing plans are produced. More specifi-
cally, on the problem instances of Gelinas et al. (1995)
with short scheduling horizons (see Table 10), the
additional cost of routing backhaul customers after
linehaul customers is 17.34%. On the other hand,
the corresponding averages on Kontoravdis and Bard
(1995) problem instances (see Table 11) with long
scheduling horizons and relatively many customers
per vehicle route are much higher. In particular, the
average is close to 31% for problem instances with
randomly scattered customers and more than 43%
for problem instances with mixed random and clus-
tered customers. Thus, it seems that as the number of
customers per vehicle route increases (for a homoge-
neous fleet of capacitated vehicles), the cost of enforc-
ing visiting order restrictions also increases, even
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Table 11 Comparison of Different Mixing Levels on Kontoravdis and Bard (1995) Data Set

� = 1000 � = 0075 � = 0050 � = 0025 � = 0000
Problem
instance NV TD NV TD NV TD NV TD NV TD

MR201 4 11256031 4 11260043 4 11350022 5 11623031 5 11723092
MR202 4 11086046 4 11087024 4 11117040 4 11356095 5 11464050
MR203 4 894054 4 894054 4 910030 4 11036066 4 11413032
MR204 4 737043 4 741002 4 773088 4 819062 4 977095
MR205 4 974026 4 983054 4 11025013 4 11193033 5 11286089
MR206 4 893067 4 900093 4 926037 4 11023084 5 11167021
MR207 4 800079 4 810081 4 830084 4 883078 4 11085030
MR208 4 716028 4 720028 4 740007 4 777023 4 912063
MR209 4 877004 4 882047 4 937013 4 11042094 4 11449045
MR210 4 924056 4 928036 4 947039 4 11061099 4 11360079
MR211 4 763009 4 764086 4 795003 4 901072 4 11076016
MNV/MTD 4.00 902022 4.00 906077 4.00 941025 4.09 11065058 4.36 11265028
Cost/%Gap 1,302.22 0000 1,306.77 0035 1,341.25 3000 1,474.67 13024 1,701.65 30067
MRC201 5 11338096 5 11345001 5 11446065 6 11595027 6 21012092
MRC202 4 11223070 4 11245022 4 11345019 5 11412072 5 11865020
MRC203 4 987080 4 11008086 4 11029035 4 11265024 5 11413017
MRC204 4 833060 4 845032 4 873085 4 935039 4 11236053
MRC205 4 11411019 4 11429048 4 11730003 5 11580042 6 11769078
MRC206 4 11221074 4 11250066 4 11609063 5 11461052 6 11869022
MRC207 4 11066024 4 11096077 4 11233062 5 11238097 5 11574065
MRC208 4 843058 4 897078 4 957099 4 11124081 4 11661011
MNV/MTD 4.13 11115085 4.13 11139089 4.13 11278029 4.75 11326079 5.125 11675032
Cost/%Gap 1,528.35 0000 1,552.39 1057 1,690.79 10063 1,801.79 17089 2,187.82 43015

if the total number of backhaul customers remains
the same.

Along the same lines, the effect of relaxing the
linehaul-backhaul precedence restrictions seems to be
strong. Regarding longhaul problem instances, start-
ing from the restrictive policy of � = 0, significant
improvements are obtained as � gradually increases.
The peak is observed at the early stages (region from
0 to 0.5) as ordering restrictions are relaxed (i.e., 3%
to 13% improvements for � = 0025, and 10% to 17%
improvements for � = 005). However, the influence of
� after this point gradually fades out (i.e., 0.3% to 2%
improvements are obtained when moving from 0.75
to 1). On the contrary, small performance degradation
for different levels of linehaul-backhaul precedence
restrictions (less than 3%) are observed considering
shorthaul problem instances. However, the difference
in the region 0 to 0.25 is quite large (more than 14%).

Overall, it is apparent that the optimal policy is to
allow the free mixing of linehaul and backhaul cus-
tomers, and even a small increase in scheduling flexi-
bility may result in significant improvements, at least
for longhaul problem instances. On the other hand,
it seems that in cases where time windows dictate
to a large extent the vehicle routing plan, and rel-
atively few customers are served per vehicle route,
the effect of different mixing levels plays a rather
minor role. It is also worth mentioning that the earlier
work of Reimann and Ulrich (2006) arrives at similar
conclusions.

5.6. Effect of the Density of Backhaul Customers
Another important aspect is the density of back-
haul customers because they may significantly affect
the cost of the resulting vehicle routing plans. From
Table 10, it is observed that at least for VRPCBTW
instances both fleet sizes and traveling distances
increase as the total number of backhaul cus-
tomers increases. Note that the opposite effect occurs
when the percentage of backhaul customers increases
beyond 50% (the extreme cases of 100% linehauls
or 100% backhauls are equivalent). The figures are
similar for the large scale VRPCBTW instances of
Thangiah, Potvin, and Sun (1996) (see Tables 2 and 3).
Figures 1–3 illustrate the effect of the number of back-
haul customers on the number of vehicles and the
distance traveled considering VRPCBTW instances
with 100, 250, and 500 customers, respectively.

On the other hand, the effect of the density of
backhaul customers with respect to the percentage
of deviation among different backhaul strategies and
mixing levels seems to be limited (see Table 10). How-
ever, one may expect that this is probably not the case
for longhaul problem instances. Finally, it is worth
mentioning that the worst results in terms of solution
quality are observed with mixes of 50% linehauls and
50% backhauls (with very few exceptions).

5.7. Analysis of Method Components
This section analyzes the role of the main algorith-
mic components of the proposed APR solution frame-
work. In particular, we measure the impact of the
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81

87

90

10%BH 30%BH 50%BH

(a) Cumulative number of vehicles

7,621.02

7,840.26

8,075.73

10%BH 30%BH 50%BH

(b) Cumulative distance traveled

Figure 1 Effect of Backhauls Density on 100-Customer Gelinas et al.
(1995) Data Set

142

148

153

10%BH 30%BH 50%BH

(a) Cumulative number of vehicles

17,145.72

18,550.99
18,768.44

10%BH 30%BH 50%BH

(b) Cumulative distance traveled

Figure 2 Effect of Backhauls Density on 250-Customer Thangiah,
Potvin, and Sun (1996) Data Set

adaptive path relinking mechanism, the contribution
of infeasible solutions, and the reference set update
method. To that end, we examined three configura-
tions by removing one element at a time from the
method. The first (Config-1) does not incorporate
the construction of provisional solutions and selects
at random a guiding solution from the reference
set. Observe that in this case the overall frame-
work reduces to an ordinary path relinking solution
approach. The second (Config-2) does not allow the

218

223

228

10%BH 30%BH 50%BH

(a) Cumulative number of vehicles

26,302.53

28,101.80 28,199.75

10%BH 30%BH 50%BH

(b) Cumulative distance traveled

Figure 3 Effect of Backhauls Density on 500-Customer Thangiah,
Potvin, and Sun (1996) Data Set

acceptance of infeasible solutions within the reference
set and relies exclusively on feasible solutions. In this
configuration, infeasible solutions are only accepted
as intermediate solutions for further improvement
via local search. Apparently, this element cannot be
avoided because of the fleet minimization objective.
Finally, the third (Config-3) adopts an elitist scheme
for updating the reference set and considers myopi-
cally the ordinary (or the penalized) solution cost.

Table 12 summarizes the results obtained from
the above described algorithmic configurations on
selected benchmark data sets. Each column reports
the percentage deviation of each configuration with
respect to the best average results of APR in terms
of fleet size and traveling distance. Furthermore, the
mean computational time is reported in minutes,
assuming one simulation run. Clearly, all algorith-
mic components play an important role in the per-
formance of APR, and they always have a positive
contribution. Among them the most crucial seems to
be the adaptive path relinking mechanism, followed
by the reference set update method. Regarding the
contribution of infeasible solutions, their role seems
important only for large-scale problems, especially in
fleet size minimization.

Overall, these experiments illustrate the pertinence
of the APR solution framework for vehicle routing
and scheduling problems with pickups and deliveries
and underline the role of the proposed APR solution
framework as well as the local search improvement
method. Based on computational experience, the pro-
posed adaptive multisolution path relinking mech-
anism exhibits two key properties. The first is that
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Table 12 Analysis of APR Algorithmic Configurations

Benchmark Config-1 Config-2 Config-3

Data set Fleet (%) Distance (%) Time Fleet (%) Distance (%) Time Fleet (%) Distance (%) Time

VRPCBTW (R1-100) +0000 +0007 1087 +0000 +0001 1062 +0000 +0008 1014
VRPCBTW (R1-250) +0023 +0034 15040 +0000 +0012 6053 +0000 +0032 6033
VRPCBTW (R1-500) +0075 +0087 62034 +0015 +0043 23011 +0090 +1002 24002
VRPMBTW (MR2 + MRC2-100) +0000 +0003 3065 +0000 +0000 3002 +0000 +0000 3067
VRPTW (G2-200) +0000 +1016 41002 +0000 +0032 24034 +0014 +1035 22045
VRPTW (G4-400) +0029 +3064 198001 +0007 +0096 85006 +0029 +3012 87009

during the early stages of solution manipulation the
convergence velocity is high because the similarity
between the intermediate solutions (produced via the
path generation mechanism) and the reference solu-
tions gradually increases. The second property is that
during the late stages of the search process the proba-
bilistic reconstruction of the reference solutions offers
a very useful variation and increases the chances to
escape from local optimum solutions.

6. Conclusions
This paper presented an Adaptive Path Relinking
solution method that deals with one-to-many-to-one
vehicle routing and scheduling problems with pick-
ups and deliveries. The focus was given on problem
settings with clustered and mixed backhauls, includ-
ing the so-called VRPCBTW and VRPMBTW, and
problem instances with different mixing levels and
visiting order restrictions are also examined. Consid-
ering VRPCBTW instances, all linehaul customers of
a route must be serviced before the vehicle starts vis-
iting backhaul customers. Conversely, the mixing of
linehaul and backhaul customers along the routes is
allowed in VRPMBTW instances.

The proposed solution approach evolves a set of
reference solutions by exploring search trajectories
and combinations among multiple reference solu-
tions. The main contribution lies in the integra-
tion of a large neighborhood search technique with
novel diversity measures within the path relinking
framework that is used to produce guiding provi-
sional solutions. On return, these provisional solu-
tions are used as guiding points for generating
search trajectories from initial reference solutions.
The suggested path generation procedure incorpo-
rates multiple edge-exchange structures for variation
and also benefits from tunneling. To this end, a set of
promising solutions is selected and further improved
via a local search algorithm. The latter treats both
feasible and infeasible solutions on the basis of a new
penalized cost function and incorporates computa-
tionally efficient neighborhood structures and evalua-
tion methods.

Experimental results on benchmark data sets of
the literature demonstrated the competitiveness and

robustness of the proposed approach. Compared to
existing results for the VRPCBTW and VRPMBTW, it
proved to be highly efficient and effective in improv-
ing the best reported cumulative and mean results
over all sets with reasonable computational require-
ments and fixed parameter settings. Furthermore, it
obtained the minimum published fleet size for all
problem instances, and it matched or improved sev-
eral best known solutions. On the other hand, it
also obtains high quality solutions and comparable
results with respect to the state-of-the-art methods
for the VRPTW. Computational experiments on the
effect of backhauling strategies suggested that as the
number of customers per vehicle route increases,
the cost of enforcing visiting order restrictions also
increases, even if the total number of backhaul cus-
tomers remains the same. Moreover, it is evident that
even small increases in scheduling flexibility, con-
sidering the mixed order of linehaul and backhaul
customers with respect to capacity restrictions, may
result in significant cost reductions.

A research direction worth pursuing is toward the
design of more sophisticated adaptive path relinking
components. One option is to incorporate advanced
pattern identification features instead of looking
myopically at the recurrence of customer pairs. It is
also important to design self adaptive procedures for
tuning the variation parameter based on the search
progress. Furthermore, the implementation of alter-
native selection and reference set update strategies
may also render considerable improvements. Finally,
as research moves toward more realistic and rich
problems, the development of large-scale problem
instances for one-to-many-to-one vehicle routing and
scheduling problems that capture the essence of dif-
ferent backhauling strategies is of great interest.
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Appendix. Results on the Large-Scale VRPTW Data Sets
Table A.1 provides the detailed results obtained (i.e., number of vehicles and distance traveling cost) for each VRPTW
instance of each class for every group. The table is divided into five parts each corresponding to a group. Each group
contains six major columns each associated with a particular class, and the very first column refers to the index of the
problem instance.

Table A.1 Results for the Large-Scale VRPTW Data Sets of Gehring and Homberger (1999)

R1 R2 C1 C2 RC1 RC2

Set # NV TD NV TD NV TD NV TD NV TD NV TD

Group G02—200 customers

1 20 41795004 4 41483016 20 21704057 6 11931044 18 31622092 6 31099053
2 18 41063005 4 31621020 18 21917089 6 11863016 18 31288045 5 21825024
3 18 31387047 4 21881015 18 21725021 6 11775008 18 31035029 4 21617017
4 18 31081019 4 11981030 18 21649099 6 11703043 18 21854083 4 21050033
5 18 41124064 4 31367053 20 21702005 6 11878085 18 31419092 4 21911046
6 18 31624095 4 21913003 20 21701004 6 11857035 18 31407064 4 21880006
7 18 31150011 4 21453042 20 21701004 6 11849046 18 31208051 4 21528063
8 18 21970077 4 11849098 19 21775048 6 11820053 18 31149029 4 21315059
9 18 31787095 4 31095003 18 21687083 6 11830005 18 31123037 4 21175098

10 18 31316096 4 21654097 18 21643055 6 11806058 18 31020061 4 21018095

Group G04—400 customers

1 40 101373064 8 91216035 40 71152006 12 41116014 36 81752091 11 61687061
2 36 91082067 8 71609087 36 71696016 12 31930025 36 71997041 9 61370090
3 36 71964091 8 61045094 36 71073044 11 41118036 36 71657084 8 51014053
4 36 71381005 8 41321092 36 61866080 11 31918068 36 71379095 8 31663038
5 36 91318096 8 71153091 40 71152006 12 31938069 36 81305070 8 61982028
6 36 81485069 8 61127060 40 71153045 12 31875094 36 81267099 8 51960064
7 36 71691027 8 51131011 39 71443042 12 31894016 36 81037072 8 51468080
8 36 71294060 8 41039085 37 71465039 11 41354087 36 71803008 8 41858098
9 36 81797066 8 61437022 36 71138036 12 31877034 36 71777035 8 41645050

10 36 81250098 8 51853075 36 61871090 11 31936091 36 71706041 8 41330069

Group G06—600 customers

1 59 211472067 11 181333077 60 141095064 18 71774016 55 171753014 14 131613052
2 54 191366014 11 141959042 56 141367062 17 81352004 55 161429035 12 111779080
3 54 171402073 11 111293026 56 131797056 17 71606040 55 151585008 11 91582030
4 54 161213087 11 81153044 56 131744061 17 71083029 55 151077054 11 71362030
5 54 201584025 11 151337079 60 141085072 18 71575020 55 171168010 11 131491024
6 54 181436036 11 121878002 60 141089066 18 71471017 55 201223031 11 121177065
7 54 171172023 11 101401044 57 151999027 18 71513080 55 161839036 11 101869008
8 54 161458056 11 71747055 56 141637003 17 71746096 55 161567052 11 101411028
9 54 191240080 11 131854058 56 131732003 17 81094005 55 161386057 11 101122047

10 54 181259081 11 121708042 56 131759041 17 71374099 55 161306060 11 91354032

Group G08—800 customers

1 80 371170053 15 281325052 80 251184038 24 111662008 72 351950020 18 211498009
2 72 341008026 15 231125057 72 271870048 23 121498057 72 331205032 16 181600027
3 72 301393014 15 181298092 72 241699080 23 111489060 72 301658039 15 151019063
4 72 291291067 15 131852047 72 241374065 23 111101030 72 291103057 15 111552061
5 72 341474027 15 241720022 80 251166028 24 111434003 72 351456012 15 191905072
6 72 311755055 15 211012084 80 251160085 24 111348043 72 351745020 15 181823076
7 72 291748081 15 171215072 78 251945074 24 111378045 72 341253013 15 171350000
8 72 291076039 15 131188023 74 261044071 23 111623001 72 331859045 15 161605035
9 72 331173037 15 221825091 72 281232027 23 121265059 72 331340068 15 151907030

10 72 311439064 15 211050021 72 261037026 23 111144008 72 331610043 15 151101032

Group G10—1,000 customers

1 100 541682065 19 431065029 100 421478095 30 161879024 90 481231062 20 311407033
2 91 521681006 19 341586073 90 441315058 29 171135069 90 451894061 19 271475007
3 91 481513025 19 261022043 90 411030079 29 161426052 90 441914023 18 201896026
4 91 451861096 19 181826009 90 401328090 28 161061004 90 431878098 18 161558041
5 91 551131005 19 371482021 100 421470012 30 161576030 90 471173002 18 281020083
6 91 501693091 19 311103008 100 421471028 29 171198018 90 461558083 18 271515004
7 91 471827070 19 241309029 98 431830076 30 161438027 90 461835018 18 261594087
8 91 451909034 19 181181088 93 431238079 29 161454037 90 461063074 18 251351063
9 91 511790040 19 341319036 90 421317069 29 161716005 90 461482000 18 241103051

10 91 491754025 19 311056071 90 421025093 28 161865039 90 461422059 18 221832097
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