12. Inventory Management

BIA 674 - Supply Chain Analytics

Outline

- The Importance of Inventory
- Inventory Costs
- ABC Analysis
- EOQ Models
- Probabilistic Models and Safety Stock
- Inventory Control Systems
- Single-Period Model
- Using Simulation for Inventory Management

What is Inventory?

Stock of items kept to meet future demand for

- internal customers
- external customers
- Purpose of inventory management
 - ORDERING POLICY: When and how many units to order of each material when orders are placed with either outside suppliers or production departments within organizations?
 - ISSUING POLICY: how to issue units from inventory? (FIFO, LIFO, random?)

Importance of Inventory

- Inventories are important to all types of firms:
 - They have to be counted, paid for, used in operations, used to satisfy customers, and managed
 - Too much inventory reduces profitability
 - Too little inventory damages customer confidence
- It is one of the most expensive assets of many companies representing as much as 50% of total invested capital
- It is one of the 3 most common reasons for SME bankruptcy
- Need to balance inventory investment and customer service

Why Do We Want to Hold Inventory

- Improve customer service
- Safe-guard to hazards in demand, supply, and delivery that might cause stock-out
- Take advantage of economies of scale, & reduce:
 - ordering costs
 - Stock-out costs
 - acquisition costs
 - Fixed costs (e.g. fixed ordering costs)
- Contribute to the efficient and effective operation of the production system, e.g.,
 - Reduces the number of costly set-ups and reschedulings
 - Smoothing and stabilizing resource utilization

Why We Do Not Want to Hold Inventory

Certain costs increase such as

- Storage costs
- insurance costs
- outdate costs
- Iarge-lot quality cost
- cost of production problems
- Ties capital for which the company pays interest
- Hides productivity and quality problems
- Risk of getting stuck with unsalable goods

Types of Inventory

- Raw material
 - Purchased but not processed
- Work-in-process (WIP)
 - Undergone some change but not completed
 - A function of cycle time for a product (e.g. items being transported)
- Maintenance/repair/operating (MRO)
 - Necessary to keep machinery and processes productive
- Finished goods
 - Completed product awaiting shipment

The Material Flow Cycle

Inventory and Service Quality

Customers usually perceive quality service as availability of goods they want when they want them

Inventory must be sufficient to provide high-quality customer service

Inventory Costs

Inventory-Related Costs

Ordering costs (unit variable costs & fixed ordering costs)

- costs of replenishing inventory, placing orders, receiving goods
- costs for to prepare a machine or process for manufacturing an order
- Holding or Inventory carrying costs
 - cost of holding an item in inventory over time
- Shortage or Stock-out / penalty costs
 - How do you handle shortages?
 - Lost sales vs. backlogging
 - Watch out for service level
- Outdate costs (for perishable products)
- Opportunity costs

Holding Costs

Determining Inventory Holding Costs						
CATEGORY	COST (AND RANGE) AS A PERCENT OF INVENTORY VALUE					
Housing costs (building rent or depreciation, operating costs, taxes, insurance)	6% (3 - 10%)					
Material handling costs (equipment lease or depreciation, power, operating cost)	3% (1 - 3.5%)					
Labor cost (receiving, warehousing, security)	3% (3 - 5%)					
Investment costs (borrowing costs, taxes, and insurance on inventory)	11% (6 - 24%)					
Pilferage, space, and obsolescence (much higher in industries undergoing rapid change like PCs and cell phones)	3% (2 - 5%)					
Overall carrying cost	26%					

Holding Costs

- Pay attention to your more critical products!
- Divides inventory into three classes based on annual dollar volume
 - Class A high annual dollar volume
 - Class B medium annual dollar volume
 - Class C low annual dollar volume
- Used to establish policies that focus on the few critical parts and not the many trivial ones

Concept: All items do not deserve the same attention in terms of inventory management

Focus on items that have the <u>highest monetary value</u>

Step 1. Start with the inventoried items ranked by dollar value in inventory in descending order
 Step 2. Plot the cumulative dollar/euro value in inventory versus the cumulative items in inventory

ABC Analysis Example

ABC Calculation								
(1)	(2) PERCENT OF	(3)	(4)		(5)	(6) PERCENT	(7)	
ITEM STOCK NUMBER	NUMBER OF ITEMS STOCKED	ANNUAL VOLUME (UNITS)	UNIT x COST		ANNUAL DOLLAR VOLUME	OF ANNUAL DOLLAR VOLUME	CLASS	
#10286	20%	1,000	\$ 90.00		\$ 90,000	38.8%	А	
#11526		500	154.00		77,000	33.2%	А	
#12760		1,550	17.00		26,350	11.3%	В	
#10867	30%	350	42.86		15,001	6.4% > 23%	В	
#10500		1,000	12.50		12,500	5.4%	В	
#12572		600	\$ 14.17		\$ 8,502	3.7%	С	
#14075		2,000	.60		1,200	.5%	С	
#01036	50%	100	8.50		850	.4% > 5%	С	
#01307		1,200	.42		504	.2%	С	
#10572		250	.60		150	.1%	С	
		8,550			\$232,057	100.0%		

Percentage of inventory items

- Other criteria than annual dollar volume may be used
 - High shortage or holding cost
 - Anticipated engineering changes
 - Delivery problems
 - Quality problems

- Policies employed may include
 - More emphasis on supplier development for A items
 - 2. Tighter physical inventory control for A items
 - 3. More care in forecasting A items

EOQ Models

Ordering Policy under constant demand

Simple case

- 1. Demand rate is constant and known with certainty
- 2. Unit ordering cost = C
- 3. Every time an order is placed, there is a fixed cost = S
- 4. There is a unit holding cost = H
- 5. No constraints are placed on the size of each order
- 6. The lead time is zero

What is wrong with this management?

- Company with steady rate of demand D = 100 tons/month
- Total annual demand = 1200 tons
- \square Purchase price C = $\frac{250}{\text{ton}}$
- \Box Delivery costs S = \$50 (each time)
- □ Holding costs (storage, insurance, ...) $H = \frac{4}{\text{ton}}$

Get rid of pre-conceived ideas ...

Irrational Ordering (time, quantity) ... why?
 Safety stock ... why?

Inventory Usage Over Time

Determining the optimal cycle

Objective is to minimize Total Annual Cost

Minimizing Costs

- By minimizing the sum of setup (or ordering) and holding costs, total costs are minimized
- Optimal order size Q* will minimize total cost

- Optimal order quantity occurs when:
 - The derivative of the Total Cost with respect to the order quantity is equal to zero
 - The holding cost and setup cost are equal

Calculating the Annual Costs

```
Annual holding cost
```

```
Annual holding cost = (Average cycle inventory)
× (Unit holding cost)
× No of orders placed / year
```

Annual ordering cost

```
Annual ordering cost = (Ordering cost / order)
× No of orders placed / year
```

Total annual cycle-inventory cost

Total Annual costs = Annual holding cost + Annual ordering cost

Calculating all the costs

Holding Cost / period

The cost of holding one unit in inventory for one cycle = H (QT)/2

Ordering Cost / period

It is the cost of ordering one lot with Q units = CQ + S

No. of orders / year

= Annual Demand / Oder Size = 12D/Q

Total Cost (C)

It is the sum of annual holding and annual setup cost

Calculating the EOQ

Variable ordering cost

Total annual cycle-inventory cost

٢

Fixed ordering cost

$$TC = N \left| (S + CQ) + H \frac{QT}{2} \right|$$

Holding cost

Where

TC = total annual cost

- *C* = unit ordering annual cycle-inventory cost
- Q = lot size
- H = holding cost per unit per period
- D =demand per period
- *S* = fixed ordering or setup costs per lot
- *T* = re-order period

Calculating the EOQ

TC = N[(S + CQ) + H(QT/2)] == (12DS/Q) + (12D/Q)CQ + (12D/Q)(HQ²/2D) = = 12DS/Q + 12DC + 6HQ

To find the optimal Quantity Q: Set derivative w.r.t Q = 0

Therefore,

 $-(12DS/Q^2)+6H = 0$

The optimal - order- quantity $Q^* = \sqrt{2SD/H} = 50$ tons T = 0,5 month

Determine the optimal number of units to order D = 1,000 units per year S = \$10 per order H = \$.50 per unit per year

$$Q^* = \sqrt{\frac{2DS}{H}}$$
$$Q^* = \sqrt{\frac{2(1,000)(10)}{0.50}} = \sqrt{40,000} = 200 \text{ units}$$

Determine **expected number of orders** D = 1,000 units $Q^* = 200$ units S = \$10 per order H = \$.50 per unit per year

Expected
number of
$$= N = \frac{\text{Demand}}{\text{Order quantity}} = \frac{D}{Q^*}$$

$$N = \frac{1,000}{200} = 5 \text{ orders per year}$$

Determine optimal time between ordersD = 1,000 units $Q^* = 200$ unitsS = \$10 per orderN = 5 orders/yearH = \$.50 per unit per year

Expected time between $= T = \frac{\text{Number of working days per year}}{\text{Expected number of orders}}$

$$T = \frac{250}{5} = 50$$
 days between orders

Determine the total annual cost

- D = 1,000 units $Q^* = 200$ units
- S = \$10 per order N = 5 orders/year
- H =\$.50 per unit per year T = 50 days

Total annual cost = Setup cost + Holding cost

$$TC = \frac{D}{Q}S + \frac{Q}{2}H$$
$$= \frac{1,000}{200}(\$10) + \frac{200}{2}(\$.50)$$
$$= (5)(\$10) + (100)(\$.50)$$
$$= \$50 + \$50 = \$100$$

Note: the cost of materials is not included, as it is assumed that the demand will be satisfied and therefore it is a fixed cost
Calculating EOQ

EXAMPLE 1

A museum of natural history opened a gift shop which operates 52 weeks per year. Managing inventories has become a problem. Top-selling SKU is a bird feeder. Sales are 18 units per week, the supplier charges \$60 per unit. Ordering cost is \$45. Annual holding cost is 25 percent of a feeder's value. Management chose a 390-unit lot size.

What is the annual cycle-inventory cost of the current policy of using a 390-unit lot size?

Would a lot size of 468 be better?

Calculating EOQ

SOLUTION

We begin by computing the annual demand and holding cost as D = (18 units/week)(52 weeks/year) = 936 unitsH = 0.25(\$60/unit) = \$15

The total annual cycle-inventory cost for the current policy is

$$C = \frac{Q}{2}(H) + \frac{D}{Q}(S) = \frac{390}{2}(\$15) + \frac{936}{390}(\$45)$$
$$= \$2,925 + \$108 = \$3,033$$

The total annual cycle-inventory cost for the alternative lot size is

$$C = \frac{468}{2} (\$15) + \frac{936}{468} (\$45) = \$3,510 + \$90 = \$3,600$$

Calculating the EOQ

EXAMPLE 2

For the bird feeders in Example 1, calculate the EOQ and its total annual cycle-inventory cost. How frequently will orders be placed if the EOQ is used?

SOLUTION

Using the formulas for EOQ and annual cost, we get

EOQ =
$$\sqrt{\frac{2DS}{H}} = \sqrt{\frac{2(936)(45)}{15}} = 74.94$$
 or 75 units

The total annual cost is much less than the \$3,033 cost of the current policy of placing 390-unit orders.

Parameters

Current Lot Size (Q)	390
Demand (D)	936
Order Cost (S)	\$45
Unit Holding Cost (H)	\$15

Economic Order Quantity

75

Annual Costs

Orders per Year Annual Ordering Cost Annual Holding Cost Annual Inventory Cost 2.4 \$108.00 \$2,925.00 \$3,033.00

Annual Costs based on EOQ

Orders per Year Annual Ordering Cost Annual Holding Cost Annual Inventory Cost 12.48 \$561.60 \$562.50 \$1,124.10

When the EOQ is used, the TBO can be expressed in various ways for the same time period.

$$TBO_{EOQ} = \frac{EOQ}{D} = \frac{75}{936} = 0.080 \text{ year}$$

$$TBO_{EOQ} = \frac{EOQ}{D} (12 \text{ months/year}) = \frac{75}{936} (12) = 0.96 \text{ month}$$

$$TBO_{EOQ} = \frac{EOQ}{D} (52 \text{ weeks/year}) = \frac{75}{936} (52) = 4.17 \text{ weeks}$$

$$TBO_{EOQ} = \frac{EOQ}{D} (365 \text{ days/year}) = \frac{75}{936} (365) = 29.25 \text{ days}$$

EXAMPLE 3

Suppose that you are reviewing the inventory policies on an \$80 item stocked at a hardware store. The current policy is to replenish inventory by ordering in lots of 360 units. Additional information is:

- *D* = 60 units per week, or 3,120 units per year
- S = \$30 per order
- H = 25% of selling price, or \$20 per unit per year

What is the EOQ?

SOLUTION

EOQ =
$$\sqrt{\frac{2DS}{H}} = \sqrt{\frac{2(3,120)(30)}{20}} = 97$$
 units

What is the total annual cost of the current policy (Q = 360), and how does it compare with the cost with using the EOQ?

Current Policy	EOQ Policy	
<i>Q</i> = 360 units	<i>Q</i> = 97 units	
C = (360/2)(20) + (3,120/360)(30)	C = (97/2)(20) + (3,120/97)(30)	
<i>C</i> = 3,600 + 260	<i>C</i> = 970 + 965	
<i>C</i> = \$3,860	<i>C</i> = \$1,935	

What is the time between orders (TBO) for the current policy and the EOQ policy, expressed in weeks?

$$TBO_{360} = \frac{360}{3,120}$$
 (52 weeks per year) = 6 weeks

$$\mathsf{TBO}_{\mathsf{EOQ}} = \frac{97}{3,120} \text{ (52 weeks per year)} = 1.6 \text{ weeks}$$

Managerial Insights

SENSITIVITY ANALYSIS OF THE EOQ					
Parameter	EOQ	Parameter Change	EOQ Change	Comments	
Demand	$\sqrt{\frac{2DS}{H}}$	1	1	Increase in lot size is in proportion to the square root of <i>D</i> .	
Order/Setup Costs	$\sqrt{\frac{2DS}{H}}$	\downarrow	\downarrow	Weeks of supply decreases and inventory turnover increases because the lot size decreases.	
Holding Costs	$\sqrt{\frac{2DS}{H}}$	\downarrow	\uparrow	Larger lots are justified when holding costs decrease.	

Robustness

- The EOQ model is robust
- It works even if all parameters and assumptions are not met
- The total cost curve is relatively flat in the area of the EOQ

Introducing delivery lag

- EOQ answers the "how much" question
- The reorder point (ROP) tells "when" to order
- Lead time (L) is the time between placing and receiving an order

$$ROP = \begin{cases} Demand \\ per day \end{cases} \begin{cases} Lead time for a new \\ order in days \end{cases}$$
$$= d \times L$$
$$d = \frac{D}{D}$$
Number of working days in a year

Reorder Point Curve

Reorder Point Example

Demand = 8,000 iPods per year 250 working day year Lead time for orders is 3 working days, but it may also take 4 days

$$d = \frac{D}{\text{Number of working days in a year}}$$

= 8,000/250 = 32 units

 $ROP = d \times L$

= 32 units per day x 3 days = 96 units

= 32 units per day x 4 days = 128 units

Introducing volume discounts

- A company buys re-writable DVDs (10 disks / box) from a large mail-order distributor
- The company uses approximately 5,000 boxes / year at a fairly constant rate
- The distributor offers the following quantity discount schedule:
 - If <500 boxes are ordered, then cost = 10/box
 - If >500 but <800 boxes are ordered, then cost = \$9.50
 - If >800 boxes are ordered, then cost = \$9.25
- Fixed cost of purchasing = \$25, and the cost of capital = 12% per year. There is no storage cost.

Introducing volume discounts

□ Solve 3 EOQ models

- Each one will hold for the corresponding region; if it does not correspond, choose the lowest one that does
- □ Select the one with the lowest cost

Steps in analyzing a quantity discount

- 1. For each discount, calculate Q^*
- 2. If Q* for a discount doesn't qualify, choose the lowest possible quantity to get the discount
- Compute the total cost for each Q* or adjusted value from Step 2
- 4. Select the Q* that gives the lowest total cost

Quantity Discount Models

Allowing shortages

- A company is a mail-order distributor of audio CDs
- They sell about 50,000 CDs / year
- Each CD is packaged in a jewel box they buy from a supplier
- Fixed cost for an order of boxes = \$100; variable cost = \$0.50, storage cost = \$0.50/unit/year, and cost of money is 10%
- The company assumes that shortages are allowed, and lost demand is backlogged ... it just gets to the customer a little later (!)
- The company assigns a "penalty" of \$1 for every week that a box is delivered late, so annual shortage cost (penalty) p = \$52/unit.

Allowing shortages

- Allow shortages up to b units
- Order quantity Q
- Order-up-to inventory = Q-b
- Reorder period = Q/D
 Period with I>0 = (Q-b)/D
 Period with I<0 = b/D

Allowing shortages

- Total Annual Cost = Ordering + Shortage + Holding costs
- Ordering cost = N [(S+CQ) + (pb(b/D)/2) + H(Q-b)((Q-b)/D)/2]
- □ Since N = D/Q, we have
- □ Total Annual Cost = $DS/Q + CD + (pb^2/2Q) + H(Q-b)^2/2D$
- To minimize, take derivative = 0, and solve
 hQ² HbQ (DS+pb²) = 0

- Used when inventory builds up over a period of time after an order is placed
- Used when units are produced and sold simultaneously

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

(Annual inventory) = (Average inventory level) x (Holding cost per unit per year)

 $\begin{pmatrix} Maximum \\ inventory \ level \end{pmatrix} = \begin{pmatrix} Total \ items \ produced \\ during \ the \ production \end{pmatrix} - \begin{pmatrix} Total \ items \ used \\ during \ the \\ production \ run \end{pmatrix}$

$$= pt - dt$$

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

 $\begin{pmatrix} Maximum \\ inventory level \end{pmatrix} = \begin{pmatrix} Total produced during \\ the production run \end{pmatrix} - \begin{pmatrix} Total used during \\ the production run \end{pmatrix}$

$$= pt - dt$$

However, Q = total produced = pt; thus t = Q/p

$$\begin{pmatrix} \text{Maximum} \\ \text{inventory level} \end{pmatrix} = p \left(\frac{Q}{p} \right) - d \left(\frac{Q}{p} \right) = Q \left(1 - \frac{d}{p} \right)$$

Holding cost =
$$\frac{\text{Maximum inventory level}}{2}$$
 (*H*) = $\frac{Q}{2} \left[1 - \left(\frac{d}{p} \right) H \right]$

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

Setup cost = (D/Q)SHolding cost = $\frac{1}{2}HQ\left[1-\left(d/p\right)\right]$ $\frac{D}{O}S = \frac{1}{2}HQ\left[1 - \left(\frac{d}{p}\right)\right]$ $Q^2 = \frac{2DS}{H \left[1 - \left(\frac{d}{p} \right) \right]}$ $Q_p^* = \sqrt{\frac{2DS}{H\left[1 - \left(\frac{d}{p}\right)\right]}}$

Remember, with no production taking place

Production Order Quantity Example

D =1,000 units *S* =\$10 *H* =\$0.50 per unit per year p = 8 units per day d = 4 units per day

$$Q_p^* = \sqrt{\frac{2DS}{H[1 - (d/p)]}}$$
$$Q_p^* = \sqrt{\frac{2(1,000)(10)}{0.50[1 - (4/8)]}}$$
$$= \sqrt{\frac{20,000}{0.50(1/2)}} = \sqrt{80,000}$$
$$= 282.8 \text{ units, or } 283 \text{ units}$$

Note:

$$d = 4 = \frac{D}{\text{Number of days the plant is in operation}} = \frac{1,000}{250}$$

When annual data are used the equation becomes

$$Q_p^* = \sqrt{\frac{2DS}{H\left(1 - \frac{\text{Annual demand rate}}{\text{Annual production rate}}\right)}}$$

Probabilistic Models and Safety Stock

Probabilistic Models and Safety Stock

- Demand is often UNCERTAIN
- The problem appears when there is LEAD TIME, L
- We have to set two parameters that define our ordering policy: Reorder Point (ROP) and Safety Stock (ss)
- You reorder when your inventory falls on or below ROP
- Use safety stock to achieve a desired service level and avoid stockouts

$$ROP = d \ge L + ss$$

Expected Annual stockout costs = (expected units short/ cycle) x the stockout cost/unit x the number of orders per year

Safety Stock Example

Current policy:ROP = 50 unitsStockout cost = \$40 / unitOrders per year = 6Carrying cost = \$5 / unit / year

Probability distribution for inventory demand during lead time

NUMBER OF UNITS (d X L)	PROBABILITY	
30	.2	
40	.2	
Current ROP \rightarrow 50	.3	
60	.2	
70	.1	
	1.0	

How much safety stock should we keep and added to 50 (current ROP)?

Safety Stock Example

ROP = 50 unitsStockout cost = \$40 /unitOrders /year = 6Carrying cost = \$5 /unit/ year

SAFETY STOCK	ADDITIONAL HOLDING COST	STOCKOUT COST		TOTAL COST
20	(20)(\$5) = \$100		\$0	\$100
10	(10)(\$5) = \$50	(10)(.1)(\$40)(6)	= \$240	\$290
0	\$ O	(10)(.2)(\$40)(6) + (20)(.1)(\$40)(6)	= \$960	\$960

A safety stock of 20 units gives the lowest total cost ROP = 50 + 20 = 70 frames

Use prescribed service levels to set safety stock when the cost of stockouts cannot be determined

ROP = demand during lead time + $Z\sigma_{dLT}$

Where:

Z = Number of standard deviations

 $\sigma_{\!dLT}$ = Standard deviation of demand during lead time

- μ = Average demand = 350 kits
- σ_{dLT} = Standard deviation of demand during lead time = 10 kits
 - Z = 5% stockout policy (service level = 95%)

Using Normal distribution tables, for an area under the curve of 95%, the Z = 1.65

Safety stock = $Z\sigma_{dLT}$ = 1.65(10) = 16.5 kits

Reorder point = Expected demand during lead time + Safety stock

- = 350 kits + 16.5 kits of safety stock
- = 366.5 or 367 kits

Other Probabilistic Models

- When data on demand during lead time is not available, there are other models available
 - 1. When demand is variable and lead time is constant
 - When lead time is variable and demand is constant
 - 3. When both demand and lead time are variable

Other Probabilistic Models: Variable demand, constant lead time

Demand is variable and lead time is constant

ROP = (*Average* daily demand x Lead time in days) + $Z\sigma_{dLT}$

where $\sigma_{dLT} = \sigma_d \sqrt{\text{Lead time}}$ $\sigma_d = \text{standard deviation of demand per day}$
Other Probabilistic Models: Variable demand, constant lead time

Average daily demand (normally distributed) = 15 Lead time in days (constant) = 2 Standard deviation of daily demand = 5 Service level = 90%

Z for 90% = 1.28 From Appendix I

ROP = (15 units x 2 days) +
$$Z\sigma_{dLT}$$

= 30 + 1.28(5)($\sqrt{2}$)
= 30 + 9.02 = 39.02 ≈ 39

Safety stock is about 9 computers

Other Probabilistic Models: Constant demand, variable lead time

ROP = (Daily demand x *Average* lead time in days) + Z x (Daily demand) x σ_{LT}

where σ_{LT} = Standard deviation of lead time in days

Other Probabilistic Models: Constant demand, variable lead time

Daily demand (constant) = 10 Average lead time = 6 days Standard deviation of lead time = σ_{LT} = 1 Service level = 98%, so *Z* (from Appendix I) = 2.055

ROP = (10 units x 6 days) + 2.055(10 units)(1)= 60 + 20.55 = 80.55

Reorder point is about 81 cameras

Other Probabilistic Models: Variable demand, variable lead time

ROP = (Average daily demand x Average lead time) + $Z\sigma_{dLT}$

where σ_d = Standard deviation of demand per day σ_{LT} = Standard deviation of lead time in days $\sigma_{dLT} = \sqrt{(\text{Average lead time x } \sigma_d^2)} + ((\text{Average daily demand})^2 \sigma_{LT}^2)^2 + ((\text{Average daily demand})^2 - \sigma_{LT}^2)^2}$

Other Probabilistic Models: Variable demand, variable lead time

Average daily demand (normally distributed) = 150 Standard deviation = σ_d = 16 Average lead time 5 days (normally distributed) Standard deviation = σ_{LT} = 1 day Service level = 95%, so *Z* = 1.65 (from Normal tables)

$$ROP = (150 \text{ packs} \times 5 \text{ days}) + 1.65\sigma_{dLT}$$

$$\sigma_{dLT} = \sqrt{(5 \text{ days} \times 16^2) + (150^2 \times 1^2)} = \sqrt{(5 \times 256) + (22,500 \times 1)}$$

$$= \sqrt{(1,280) + (22,500)} = \sqrt{23,780} \approx 154$$

$$ROP = (150 \times 5) + 1.65(154) \approx 750 + 254 = 1,004 \text{ packs}$$

Inventory Control Systems

Inventory Control Systems

- \Box Continuous review (Q) system
 - Reorder point system (ROP) and fixed order quantity system
 - For independent demand items (i.i.d.)
 - Tracks inventory position (IP)
 - Includes scheduled receipts (SR), on-hand inventory (OH), and back orders (BO)

Inventory position = On-hand inventory + Scheduled receipts – Backorders

$$IP = OH + SR - BO$$

Selecting the Reorder Point

Q System When Demand and Lead Time Are Constant and Certain

The on-hand inventory is only 10 units, and the reorder point R is 100. There are no backorders, but there is one open order for 200 units. Should a new order be placed?

```
SOLUTION
```

IP = OH + SR - BO = 10 + 200 - 0 = 210R = 100

Decision: Do not place a new order

Reorder Point Level:

Assuming that the demand rate per period and the lead time are constant, the level of inventory at which a new order is placed (reorder point) can be calculated as follows:

$$R = dL$$

Where

d = demand rate per period *L* = lead time

Remember: The order quantity Q is the EOQ!

EXAMPLE 4

Demand for chicken soup at a supermarket is always 25 cases a day and the lead time is always 4 days. The shelves were just restocked with chicken soup, leaving an on-hand inventory of only 10 cases. No backorders currently exist, but there is one open order in the pipeline for 200 cases. What is the inventory position? Should a new order be placed?

SOLUTION

R = Total demand during lead time = (25)(4) = 100 casesIP = OH + SR - BO= 10 + 200 - 0 = 210 cases

Decision: Do not place a new order

Selecting the reorder point with variable demand and constant lead time

Reorder point = Average demand during lead time + Safety stock

= $\overline{d}L$ + safety stock

where

 \overline{d} = average demand per week (or day or months)

L = constant lead time in weeks (or days or months)

Continuous Review Systems (uncertain demand)

Q System When Demand Is Uncertain

How to determine the Reorder Point

- 1. Choose an appropriate service-level policy
 - Select service level or cycle service level
 - Protection interval
- 2. Determine the demand during lead time probability distribution
- Determine the safety stock and reorder point levels

Demand During Lead Time

- Specify mean d and standard deviation of the demand (typically these values are given)
- Calculate standard deviation of demand during lead time L

$$\sigma_{dLT} = \sqrt{\sigma_d^2 L} = \sigma_d \sqrt{L}$$

□ Then, the safety stock and reorder point are

Safety stock =
$$z\sigma_{dLT}$$

where

z = number of standard deviations needed to achieve the cycle-service level (found from tables)

 σ_{dLT} = stand deviation of demand during lead time

Reorder point = $R = \overline{dL}$ + safety stock

Demand During Lead Time

Finding Safety Stock with a Normal Probability Distribution for an 85 Percent Cycle-Service Level

Reorder Point for Variable Demand

EXAMPLE 5

Let us return to the bird feeder in Example 2.

- The EOQ is 75 units.
- Suppose that the average demand is 18 units per week with a standard deviation of 5 units.
- The lead time is constant at two weeks.

Determine the safety stock and reorder point if management wants a 90 percent cycle-service level.

Reorder Point for Variable Demand

SOLUTION

In this case, $\sigma_d = 5$, $\overline{d} = 18$ units, and L = 2 weeks, so $\sigma_{dLT} = \sigma_d \sqrt{L} = 5\sqrt{2} = 7.07$. Consult the body of the table in the Normal Distribution appendix for 0.9000, which corresponds to a 90 percent cycle-service level. The closest number is 0.8997, which corresponds to 1.2 in the row heading and 0.08 in the column heading. Adding these values gives a *z* value of 1.28. With this information, we calculate the safety stock and reorder point as follows:

Safety stock = $z\sigma_{dLT}$ = 1.28(7.07) = 9.05 or 9 units

Reorder point = \overline{dL} + Safety stock = 2(18) + 9 = 45 units

Reorder Point for Variable Demand

EXAMPLE 6

Suppose that the demand during lead time is normally distributed with an average of 85 and $\sigma_{dLT} = 40$. Find the safety stock, and reorder point R, for a 95 and 85 percent cycle-service level.

SOLUTION

Safety stock = $z\sigma_{dLT}$ = 1.645(40) = 65.8 or 66 units

R = Average demand during lead time + Safety stock

R = 85 + 66 = 151 units

Find the safety stock, and reorder point *R*, for an 85 percent cycle-service level.

Safety stock = $z\sigma_{dLT}$ = 1.04(40) = 41.6 or 42 units

R = Average demand during lead time + Safety stock R = 85 + 42 = 127 units

Often the case that both are variable

The equations are more complicated

Safety stock = $z\sigma_{dLT}$

R =(Average weekly demand × Average lead time) + Safety stock

= \overline{dL} + Safety stock

where

 \overline{d} = Average weekly (or daily or monthly) demand

 \overline{L} = Average lead time

 σ_d = Standard deviation of weekly (or daily or monthly) demand

 σ_{LT} = Standard deviation of the lead time

 $\boldsymbol{\sigma}_{dLT} = \sqrt{L}\boldsymbol{\sigma}_d^2 + \boldsymbol{d}^2\boldsymbol{\sigma}_{LT}^2$

EXAMPLE 7

The Office Supply Shop estimates that the average demand for a popular ball-point pen is 12,000 pens per week with a standard deviation of 3,000 pens. The current inventory policy calls for replenishment orders of 156,000 pens. The average lead time from the distributor is 5 weeks, with a standard deviation of 2 weeks. If management wants a 95 percent cycleservice level, what should the reorder point be?

SOLUTION

We have \overline{d} = 12,000 pens, σ_d = 3,000 pens, \overline{L} = 5 weeks, and σ_{LT} = 2 weeks

$$\sigma_{dLT} = \sqrt{L}\sigma_d^2 + \bar{d}^2\sigma_{LT}^2 = \sqrt{(5)(3,000)^2 + (12,000)^2(2)^2}$$
$$= 24,919.87 \text{ pens}$$

From the Normal Distribution appendix for 0.9500, the appropriate z value = 1.65. We calculate the safety stock and reorder point as follows:

Safety stock = $z\sigma_{dLT}$ = (1.65)(24,919.87) = 41,117.79 or 41,118 pens

Reorder point = \overline{dL} + Safety stock = (12,000)(5) + 41.118 = 101,118 pens

EXAMPLE 8

Grey Wolf lodge is a popular 500-room hotel in the North Woods. Managers need to keep close tabs on all of the room service items, including a special pint-scented bar soap. The daily demand for the soap is 275 bars, with a standard deviation of 30 bars. Ordering cost is \$10 and the inventory holding cost is \$0.30/bar/year. The lead time from the supplier is 5 days, with a standard deviation of 1 day. The lodge is open 365 days a year.

What should the reorder point be for the bar of soap if management wants to have a 99 percent cycle-service?

SOLUTION

$$\overline{d} = 275 \text{ bars}$$

$$\overline{L} = 5 \text{ days}$$

$$\sigma_d = 30 \text{ bars}$$

$$\sigma_{LT} = 1 \text{ day}$$

$$\sigma_{dLT} = \sqrt{\overline{L}\sigma_d^2 + \overline{d^2}\sigma_{LT}^2} = 283.06 \text{ bars}$$

From the Normal Distribution appendix for 0.9900, z = 2.33. We calculate the safety stock and reorder point as follows;

Safety stock = $z\sigma_{dLT}$ = (2.33)(283.06) = 659.53 or 660 bars Reorder point + safety stock = \overline{dL} + safety stock = (275)(5) + 660 = 2,035 bars

Periodic Review (or fixed period) System (P)

□ Fixed interval reorder system or periodic reorder system

- □ Four of the original EOQ assumptions maintained
 - No constraints are placed on lot size
 - Holding and ordering costs
 - Independent demand
 - Lead times are certain

 Order is placed to bring the inventory position up to the target inventory level, *T*, when the predetermined time, *P*, has elapsed
 Only relevant costs are ordering and holding

- ► I ead times are known and constant
- ► Items are independent of one another

Periodic Review Systems

Periodic Review Systems

- Inventory is only counted at each review period
- May be scheduled at convenient times
- Appropriate in routine situations
- May result in stockouts between periods
- May require increased safety stock

Periodic Review System (P)

P System When Demand Is Uncertain

How Much to Order in a P System

EXAMPLE 9

A distribution center has a backorder for five 36-inch color TV sets. No inventory is currently on hand, and now is the time to review. How many should be reordered if T = 400 and no receipts are scheduled?

SOLUTION

$$IP = OH + SR - BO$$

= 0 + 0 - 5 = -5 sets
 $T - IP = 400 - (-5) = 405$ sets

That is, 405 sets must be ordered to bring the inventory position up to *T* sets.

How Much to Order in a P System

EXAMPLE 10

The on-hand inventory is 10 units, and T is 400. There are no back orders, but one scheduled receipt of 200 units. Now is the time to review. How much should be reordered?

SOLUTION

$$IP = OH + SR - BO$$

= 10 + 200 - 0 = 210
 $T - IP = 400 - 210 = 190$

The decision is to order 190 units

Periodic Review System

- $\hfill\square$ Selecting the time between reviews, choosing P and T
- Selecting T when demand is variable and lead time is constant
 IP covers demand over a protection interval of P + L

The average demand during the protection interval is $\overline{d}(P+L)$, or

 $T = \overline{d}(P + L)$ + safety stock for protection interval

Safety stock = $z\sigma_{P+L}$, where $\sigma_{P+L} = \sigma_d \sqrt{P+L}$

Calculating P and T

EXAMPLE 11

Again, let us return to the bird feeder example. Recall that demand for the bird feeder is normally distributed with a mean of 18 units per week and a standard deviation in weekly demand of 5 units. The lead time is 2 weeks, and the business operates 52 weeks per year. The Q system developed in Example 5 called for an EOQ of 75 units and a safety stock of 9 units for a cycle-service level of 90 percent. What is the equivalent P system? Answers are to be rounded to the nearest integer.

Calculating P and T

SOLUTION

We first define D and then P. Here, P is the time between reviews, expressed in weeks because the data are expressed as demand per week:

D = (18 units/week)(52 weeks/year) = 936 units

$$P = \frac{\text{EOQ}}{D}(52) = \frac{75}{936}(52) = 4.2 \text{ or } 4 \text{ weeks}$$

With d = 18 units per week, an alternative approach is to calculate *P* by dividing the EOQ by d to get 75/18 = 4.2 or 4 weeks. Either way, we would review the bird feeder inventory every 4 weeks.

Calculating P and T

We now find the standard deviation of demand over the protection interval (P + L) = 6:

$$\sigma_{P+L} = \sigma_d \sqrt{P+L} = 5\sqrt{6} = 12.25$$
 units

Before calculating *T*, we also need a z value. For a 90 percent cycle-service level z = 1.28. The safety stock becomes

Safety stock =
$$z\sigma_{P+L}$$
 = 1.28(12.25) = 15.68 or 16 units

We now solve for *T*:

T = Average demand during the protection interval + Safety stock = $\overline{d}(P + L)$ + safety stock = (18 units/week)(6 weeks) + 16 units = 124 units

Comparative Advantages

- \square Primary advantages of P systems
 - Convenient
 - Orders can be combined
 - Only need to know IP when review is made
- Primary advantages of Q systems
 - Review frequency may be individualized
 - Fixed lot sizes can result in quantity discounts
 - Lower safety stocks

Single Period Model
Single-Period Model

- Only one order is placed for a product
- Units have little or no value at the end of the sales period
- Newsboy problem 1:
- Demand = 500 papers/day, $\sigma = 100$ paper
- Cost to newsboy = 10c, Sales price = 30c
- How many papers should he order?

The newsboy problem

- If he sells a paper, he makes a profit = 20c
- If he doesn't sell a paper he makes a loss = 10c
- If he orders x papers, on the i-th paper he makes an expected profit:
- E(Profit)_i = 20p 10(1-p), where p=sale of i-th paper
- Breakeven occurs when the Expected profit = 0
- So, 20p 10(1-p) = 0, and therefore $p^* = 1/3$
- By looking at the Normal tables, Z = .431

The newsboy problem

Therefore:

►
$$Z = .431 = (X^* - \mu) / \sigma = (X^* - 500) / 100$$

► $X^* = 543$

A small variation

- Assume that he can return the paper, if unsold for 5c each
- $E(Profit)_i = 20p 5(1-p)$, where p=sale of i-th paper
- Breakeven occurs when the Expected profit = 0
- So, 20p 5(1-p) = 0, and therefore $p^* = 1/5$
- By looking at the Normal tables, Z = .842
- ▶ Then, X* = 584
- In general, if MR = Marginal Return and ML = Marginal Loss, then p MR - (1-p) ML = 0

•
$$p^* = ML/(MR+ML)$$

Using Simulation for stochastic inventory management

What is Simulation ?

- Simulation is a model computer code "imitating" the operation of a real system in the computer. It consists of:
- a)A set of variables representing the basic features of the real system and
- b) A set of logical commands in the computer that modify these features as a function of time in accordance with the rules (logical of physical) regulating the real system.

Main Features of a Simulation System

- The capacity to "advance time" through the use of a simulation build-in clock that monitors and the events while stepping up real time
- The capacity of drawing samples through the creation of artificial observations that behave "like" random events in the real system
 - a) Creation of random numbers (independent & uniformly distributed) by the computer (according to an internal algorithm function)
 - Conversion in the observations' distribution

Examples of applications

Very important tool for

- Service management Analysis of queuing systems
- Business Process Reengineering
- Strategic planning
- Financial planning
- Industrial design (e.g. chemical plants)
- Short term production planning
- Quality and reliability control,
- Training business games, etc

Creating random numbers according to a probability distribution

Let us suppose that the weekly demand of a product can take the following values with the respective probabilities:

*/	
Ś	
]]	

Demand (D)	Probability of Demand P(D)	Cumulative Distribution of Demand F(D)		
1,000	0.20	0.20		
1,500	0.10	0.30		
2,000	0.30	0.60		
2,500	0.25	0.85		
3,000	0.15	1.00		

The cumulative probability distribution **F**

Example

Create a "demand series" corresponding to the random numbers generated

Demand (D)	Cumulative Distribution of Demand F(D)
1,000	0.20
1,500	0.30
2,000	0.60
2,500	0.85
3,000	1.00

Week	Unif. Random Number	Week's Demand		
1	32	2,000		
2	8	1,000		
3	46	2,000		
4	92	3,000		
5	69	2,500		
6	71	2,500		
7	29	1,500		
8	46	2,000		
9	80	2,500		
10	14	1,000		

Using Simulation to define an Inventory Policy

- Assume that a company is interested to implement an (s, S) ordering policy. Determine values of s and S:
 - s = Safety stock S = Order-up-to quantity

Inventory Behavior (s = 200, S = 700)

Application to our problem

Demand (D)	Probability of Demand P(D)	Cumulative Distribution of Demand F(D)		
1,000	0.20	0.20		
1,500	0.10	0.30		
2,000	0.30	0.60		
2,500	0.25	0.85		
3,000	0.15	1.00		

Key assumptions:

- When < the safety stock s, order up to the reorder point S
- When short, make emergency order for quantity short
- Normal ordering cost = 200 + 10 quantity
- Emergency ordering cost = 500 + 15 quantity
- Leftover inventory cost = 3 quantity

Flow chart

Manual Simulation of Inventory System

• Assume: s = 1,500 and S = 2,500

Week	Starting Inventory	Need to order?	Size of order	Available inventory	Week's Demand	Emergency order?	Size of emerg. order	Ending Inventory	Weekly Cost
1	2,000	no	0	2,000	2,000	no	0	0	0
2	0	yes	2,500	2,500	2,000	no	0	500	26,700
3	500	yes	2,000	2,500	3,000	yes	500	0	30,500
4	0	yes	2,500	2,500	1,000	no	0	1,500	29,700
5	1,500	yes	1,000	2,500	2,500	no	0	0	10,200
6	0	yes	2,500	2,500	2,500	no	0	0	25,200
7	0	yes	2,500	2,500	3,000	yes	500	0	38,000
8	0	yes	2,500	2,500	1,500	no	0	1,000	28,200
9	1,000	yes	1,500	2,500	2,000	no	0	500	16,700
10	500	yes	2,000	2,500	2,500	no	0	0	20,200
Average	389	always	2,111	2,500	2,200	20%	500	389	25,044