9. Global Supply Chains and Decision Analysis

Some introductory probability concepts

- Decision Making under Uncertainty
- Simple examples of probabilities
\Rightarrow prior probabilities ... of external events
\Rightarrow conditional probabilities ... of experimental results on external events
\Rightarrow unconditional probabilities of experimental results
\Rightarrow Bayes' rule for calculating probabilities

$$
P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)
$$

Calculating
 Probabilities \& Expected Returns

- Launching of a new product
- Market demand could be High or Low
- High demand with probability 40\%
- Low demand with probability 60\%
- If Demand is High, Revenues amount to $\$ 300 \mathrm{M}$
- If Demand is Low, Revenues amount to $\$ 200 \mathrm{M}$
- Prior probabilities: $\mathrm{P}(\mathrm{H})=0.4, \mathrm{P}(\mathrm{L})=0.6$
- Expected Return
- $E R(H) \cdot P(H)+E R(L) \cdot P(L)=300 \cdot 0.4+200 \cdot 0.6=$ 240M

Introduce market research

- A market research could be conducted before launching the product
- The results of the test could be:
- Positive
- Negative
- Uncertain-Balanced

The market research experience

- Experience has shown that in case demand turns out to be:
- High the test results had turned out to be
- 50% of the time Positive
- 25% of the time Negative
- 25% of the time Uncertain
- Low the test results had turned out to be
- 20% of the time Positive
- 55% of the time Negative
- 25% of the time Uncertain

Calculating New Probabilities

$P($ positive $)=P($ pos $\mid H) \cdot P(H)+P($ pos $\mid L) \cdot P(L)$

$$
=0.5 \cdot 0.4+0.2 \cdot 0.6=0.32
$$

$P(H \mid$ pos $)=P($ pos $\mid H) \cdot P(H) / P($ pos $)=$

$$
0.5 \cdot 0.4 / 0,32=0.625
$$

$P(L \mid$ pos $)=P(p o s \mid L) \cdot P(L) / P(p o s)$

$$
0.2 \cdot 0.6 / 0.32=0.375
$$

Calculating New Expected Returns if Test is Positive

Therefore, if test is positive,

$E R=E R(H \mid$ pos $) \cdot P(H \mid$ pos $)+E R(L \mid$ pos $) \cdot P(L \mid$ pos $)=$

$$
=300 \cdot 0.625+200 \cdot 0.375=\$ 262.5 \mathrm{M}
$$

Decision Trees

Easy way to represent a probabilistic sequential problem when some probabilities are known.

$=$ chance node

Build a TREE with decision and chance nodes, where along each arc we indicate the expected return (or cost) of the corresponding decision / chance, and the probability that it will occur.

Decision Trees

Attention to the correct tree representation
\Rightarrow correct decision nodes
\Rightarrow correct chance nodes
\Rightarrow correct time sequence
\Rightarrow correct estimation/validation of probabilities
\Rightarrow correct estimation/validation of costs \& returns for each decision

Production Capacity Selection Problem

- We are introducing a new product in an existing market
- We face 2 alternative immediate decisions:
- We can either build a small production unit now (cost $=\$ 100 \mathrm{M}$) with the possibility to expand in 2 years (NPV cost expansion = $\$ 220 \mathrm{M}$), or
- We can immediately build a big plant (cost $=\$ 300 \mathrm{M}$)

Production Capacity Selection Problem

- Demand for the product is uncertain. From Market studies we know that initial (first 2 yrs) demand could be High (with Probability 70\%) or Low (with Probability 30\%)
- If demand is initially H , it will stay H with probability 85%, or it could drop to L with probability 15%
- If demand is initially L, it will stay so.

Expected NPV's of alternative investments and market situations

a) First 2 years:

	High Demand	Low Demand
Big Plant	100	10
Small Plant	35	30

b) Remaining 8 years:

	High Demand	Low Demand
Big Plant	100	10
Expansion	60	5
Small Plant	25	30

The Decision Tree

Using the Expected Return Criteria

$\operatorname{ER}(4)=(1000)(85 \%)+(280)(15 \%)=892$
$\operatorname{ER}(2)=(892)(70 \%)+(100)(30 \%)=654.40$
$E R($ Big plant $)=(654.40-300)=354.40$
$\operatorname{ER}(6)=(550)(85 \%)+(110)(15 \%)=484$
$\operatorname{ER}(7)=(270)(85 \%)+(310)(15 \%)=276$
$E R(5)=\max [484-220,276]=\max [264,276]=276$
\rightarrow No Expansion!
$\operatorname{ER}(3)=(276)(70 \%)+(300)(30 \%)=283.20$
$E R($ small plant $)=283,20-100=183.20$

BASED ON THE CRITERION OF EXPECTED RETURN IT IS PREFERRED TO BUILD A BIG PLANT NOW!

The Decision Tree

The Decision Tree

Risk Profiles

Now, would you follow the "BIG" decision?

- Applies to Risk-Neutral investors
- Other Criteria / other investors

Minimax (min max possible loss)
Maximin (max min possible return)
Cash Availability

- Another approach: Risk Profile

Shows the actual returns to occur, with corresponding probabilities.

Another Example: Marketing

Strategy

- Launching of a new product
- $P($ High demand $)=40 \%, P($ low demand $)=60 \%$
- 3 different marketing strategies:
- Aggressive (High Inventory at all outlets)
- Moderate (Inventory at outlets only for popular products)
- Conservative (Almost no inventory at outlets)
- Table indicates revenues \& costs ('000 \$) for each strategy corresponding to each market condition

Marketing Strategy	Demand High (H)	Demand Low (L)	Cost of Strategy
Aggressive, A	580	200	280
Moderate, M	330	200	130
Conservative, C	100	200	50

The Decision Tree

Calculating Expected Returns

- Assume $\mathrm{P}(\mathrm{H})=0.4$ and $\mathrm{P}(\mathrm{L})=0.6$
- $\operatorname{ER}(2)=\operatorname{ER}(\mathrm{A})=(580)(0,40)+(200)(0,60)-280=\$ 72 \mathrm{~K}$
- $\operatorname{ER}(3)=\operatorname{ER}(M)=(330)(0,40)+(200)(0,60)-130=\$ 122 \mathrm{~K}$
- $\operatorname{ER}(4)=\operatorname{ER}(\mathrm{C})=(100)(0,40)+(200)(0,60)-50=\$ 110 \mathrm{~K}$

The best strategy is the Moderate (M)

Sensitivity Analysis on $\mathrm{P}(\mathrm{H})$: start with the A strategy

- Remember: $P(H)=0.40$ and $P(L)=0.60$
- Generally, $P(H)+P(L)=1 \Rightarrow P(L)=1-P(H)$
- So, $\operatorname{ER}(\mathrm{A})=580 \mathrm{P}(\mathrm{H})+200(1-\mathrm{P}(\mathrm{H}))-280$

Sensitivity Analysis on $P(H)$: continue with the M and C strategies

- Similarly for Moderate Strategy
$E R(M)=330 P(H)+200(1-P(H))-130$
$E R(M)=70+130 \cdot P(H)$
- and for Conservative Strategy
$E R(C)=100 \mathrm{P}(\mathrm{H})+200(1-\mathrm{P}(\mathrm{H})-50$
$E R(C)=150-100 \cdot P(H)$

Sensitivity Analysis

Similar analysis with Moderate and Conservative Strategies

Sensitivity Analysis

- Since the criterion is the highest expected Net Return we can see that:

If	$P(H)<=0,348$	then Conservative!
If	$P(H)$ in $(0,348 \leftrightarrow 0,60]$	then Moderate!
If	$P(H)>0,60$	then

Note that ranges are quite large, therefore, fairly small changes in the probabilities do NOT affect the strategies

Design of Global Supply Chains

Many opportunities, but also many risks

Impact of Globalization on Supply Chain Networks

Risk FactorsNatural disasters35
Shortage of skilled resources 24
Geopolitical uncertainty 20
Terrorist infiltration of cargo 13
Volatility of fuel prices 37
Currency fluctuation 29
Port operations/custom delays 23
Customer/consumer preference shifts 23
Performance of supply chain partners 38
Logistics capacity/complexity 33
Forecasting/planning accuracy 30
Supplier planning/communication issues 27
Inflexible supply chain technology 21

The Offshoring Decision: Total Cost

\square Comparative advantage in global supply chains
\square Quantify the benefits of offshore production along with the reasons
\square Two reasons offshoring fails

1. Focusing exclusively on unit cost rather than total cost
2. Ignoring critical risk factors

Impact of Offshoring on Supply Chain Performance

Performance Dimension	Activity Impacting Performance	Impact of Offshoring
Order communication	Order placement	More difficult communication
Supply chain visibility	Scheduling and expediting	Poorer visibility
Raw material costs	Sourcing of raw material	Could go either way depending on raw material sourcing
Unit cost	Production, quality (production and	Labor/fixed costs decrease; quality may suffer
Freight costs	Transportation)	Higher freight costs
Taxes and tariffs	Border crossing	Could go either way
Supply lead time	Order communication, supplier production scheduling, production time, customs, transportation, receiving	Lead time increase results in poorer forecasts and higher inventories

Impact of Offshoring on Supply Chain

Performance

Performance Dimension

On-time delivery/lead time uncertainty

Minimum order quantity
Product returns

Inventories

Working capital

Hidden costs

Stock-outs

Activity Impacting Performance Impact of Offshoring

Production, quality, customs, transportation, receiving

Production, transportation

Quality
Lead times, inventory in transit and production
Inventories and financial reconciliation

Order communication, invoicing errors, managing exchange rate risk

Ordering, production, transportation with poorer visibility

Poorer on-time delivery and increased uncertainty resulting in higher inventory and lower product availability

Larger minimum quantities increase inventory

Increased returns likely
Increase

Increase

Higher hidden costs

The Offshoring Decision: Total Cost

\square A global supply chain with offshoring increases the length and duration of information, product, and cash flows
\square The complexity and cost of managing the supply chain can be significantly higher than anticipated
\square Quantify factors and track them over time
\square Big challenges with offshoring is increased risk and its potential impact on cost

Key Elements of Total Cost

1. Supplier price: direct materials, labor, incl. management, overhead, taxes, local regulations
2. Terms: net payment terms, volume discounts
3. Delivery costs
4. Inventory and warehousing: inventory, handling, w/h, sc inv.
5. Cost of quality: validation, cost of drop of quality, cost of remedies, etc
6. Customer duties, value added-taxes, local tax incentives
7. Cost of risk, procurement staff, broker fees, infrastructure, and tooling and mold costs
8. Exchange rate trends and their impact on cost

Risk Management In Global Supply Chains

\square Risks include supply disruption, supply delays, demand fluctuations, price fluctuations, and exchange-rate fluctuations
\square Critical for global supply chains to be aware of the relevant risk factors and build in suitable mitigation strategies
\square Important: evaluate in terms of Total Cost!

Supply Chain Risks to be considered in Network design

Disruptions

Delays

Systems risk

Forecast risk

Risk Drivers

Natural disaster, war, terrorism Labor disputes Supplier bankruptcy

High capacity utilization at supply source Inflexibility of supply source Poor quality or yield at supply source

Information infrastructure breakdown System integration or extent of systems being networked

Inaccurate forecasts due to long lead times, seasonality, product variety, short life cycles, small customer base Information distortion

Supply Chain Risks to be considered in Network design

Intellectual property risk

Procurement risk

Risk Drivers

Vertical integration of supply chain Global outsourcing and markets

Exchange-rate risk
Price of inputs
Fraction purchased from a single source
Industry-wide capacity utilization
Receivables risk

Inventory risk

Number of customers
Financial strength of customers
Rate of product obsolescence Inventory holding cost
Product value
Demand and supply uncertainty

Cost of capacity
Capacity flexibility

Risk Management In Global Supply Chains

\square Good network design can play a significant role in mitigating supply chain risk
\square Every mitigation strategy comes at a price and may increase other risks
\square Global supply chains should generally use a combination of rigorously evaluated mitigation strategies along with financial strategies to hedge uncovered risks

Risk Mitigation Strategies during Network design

Risk Mitigation Strategy
Increase capacity

Get redundant suppliers

Increase responsiveness

Tailored Strategies

Focus on low-cost, decentralized capacity for predictable demand. Build centralized capacity for unpredictable demand. Increase decentralization as cost of capacity drops.

More redundant supply for high-volume products, less redundancy for low-volume products.
Centralize redundancy for low-volume products in a few flexible suppliers.

Favor cost over responsiveness for commodity products. Favor responsiveness over cost for short-life cycle products.

Risk Mitigation Strategies during Network design

Risk Mitigation Strategy

Increase inventory

Increase flexibility

Pool or aggregate demand Increase source capability

Tailored Strategies

Decentralize inventory of predictable, lower value products. Centralize inventory of less predictable, higher value products.

Favor cost over flexibility for predictable, highvolume products. Favor flexibility for unpredictable, low-volume products. Centralize flexibility in a few locations if it is expensive.

Increase aggregation as unpredictability grows.
Prefer capability over cost for high-value, high-risk products. Favor cost over capability for low-value commodity products. Centralize high capability in flexible source if possible.

Risk Mitigation Strategies during

Network design

Risk Mitigation Strategy

Increase inventory

Increase flexibility

Tailored Strategies

Pool or aggregate demand

Flexibility, Chaining, and Containment

\square Three broad categories of flexibility
\square New product flexibility

- Ability to introduce new products into the market at a rapid rate
\square Mix flexibility
- Ability to produce a variety of products within a short period of time
\square Volume flexibility
- Ability to operate profitably at different levels of output

Flexibility, Chaining, and Containment

Dedicated Network

Fully Flexible Network

Chained Network with One Long Chain

Chained Network with Two Short Chains

Can pool available capacity!
Can be almost as effective in mitigating risk as a fully flexible supply chain, but coordination is more difficult!

Flexibility, Chaining, and Containment

\square As flexibility is increased, the marginal benefit derived from the increased flexibility decreases
\square With demand uncertainty, longer chains pool available capacity
\square Long chains may have higher fixed cost than multiple smaller chains
\square Coordination more difficult across with a single long chain
\square Flexibility and chaining are effective when dealing with demand fluctuation, but less effective when dealing with supply disruption. Here, smaller chains are more effective.

Discounted Cash Flow Analysis

\square Supply chain decisions should be evaluated as a sequence of cash flows over time
\square Discounted cash flow (DCF) analysis evaluates the present value of any stream of future cash flows and allows managers to compare different cash flow streams in terms of their financial value
\square Based on the time value of money - a dollar today is worth more than a dollar tomorrow

Discounted Cash Flow Analysis

$$
\begin{aligned}
& \text { discount factor }=\frac{1}{1+k} \\
& \mathrm{NPV}=C_{0}+{ }_{t=1}^{T} \frac{1}{1+k} \div C_{t}
\end{aligned}
$$

where
$C_{0}, C_{1}, \ldots, C_{T}$ is stream of cash flows over T periods NPV = net present value of this stream
$k=$ rate of return

- Compare NPV of different supply chain design options
- The option with the highest NPV will provide the greatest financial return

Trips Logistics Example

\square Forecasted Demand $=100,000$ units $/$ year for each of the next 3 years
$\square 1,000 \mathrm{sq}$. ft. of space for every 1,000 units of demand
\square Revenue $=\$ 1.22$ per unit of demand
\square Decision: Sign a three-year lease, OR, obtain warehousing space on the spot market?
\square Three-year lease cost $=\$ 1$ per sq. ft. per year
\square Spot market cost $=\$ 1.20$ per sq. ft. per year
$\square k=0.1$
\square Evaluate the two strategies using DCF!

Spot market strategy

\square Expected annual profit if warehouse space is obtained from the spot market $=$
$100,000 \times \$ 1.22-100,000 \times \$ 1.20=\$ 2,000$
$\mathrm{NPV}($ No lease $)=C_{0}+\frac{C_{1}}{1+k}+\frac{C_{2}}{(1+k)^{2}}$

$$
=2,000+\frac{2,000}{1.1}+\frac{2,000}{1.1^{2}}=\$ 5,471
$$

3 year lease strategy

\square Expected annual profit with three year lease $=$ $100,000 \times \$ 1.22-100,000 \times \$ 1.00=\$ 22,000$

$$
\begin{aligned}
\mathrm{NPV}(\text { Lease }) & =C_{0}+\frac{C_{1}}{1+k}+\frac{C_{2}}{(1+k)^{2}} \\
& =22,000+\frac{22,000}{1.1}+\frac{22,000}{1.1^{2}}=\$ 60,182
\end{aligned}
$$

- NPV of signing lease is $\$ 60,182-\$ 5,471=\$ 54,711$ higher than spot market
- However, how about the uncertainty in the spot prices?

Evaluating Network Designs

- Many different decisions
- Should the firm sign a long-term contract for warehousing space or get space from the spot market as needed?
- What should the firm's mix of long-term and spot market be in the portfolio of transportation capacity?
- How much capacity should various facilities have? What fraction of this capacity should be flexible?

Evaluating Network Designs

\square During network design, managers need a methodology that allows them to estimate the uncertainty in demand and price forecast and incorporate this in the decision-making process
\square Most important for network design decisions because they are hard to change in the short term

Basics of Decision Tree Analysis

\square A decision tree is a graphic device used to evaluate decisions under uncertainty
\square Identify the number and duration of time periods that will be considered
\square Identify factors that will affect the value of the decision and are likely to fluctuate over the time periods
\square Evaluate decision using a decision tree

Decision Tree Methodology

1. Identify the duration of each period (month, quarter, etc.) and the number of periods T over which the decision is to be evaluated
2. Identify factors whose fluctuation will be considered
3. Identify representations of uncertainty for each factor
4. Identify the periodic discount rate k for each period
5. Represent the decision tree with defined states in each period as well as the transition probabilities between states in successive periods
6. Starting at period T, work back to Period 0, identifying the optimal decision and the expected cash flows at each step

Decision Tree - Trips Logistics

- Three warehouse lease options

1. Get all warehousing space from the spot market as needed
2. Sign a three-year lease for a fixed amount of warehouse space and get additional requirements from the spot market
3. Sign a flexible lease with a minimum charge that allows variable usage of warehouse space up to a limit with additional requirement from the spot market

Decision Tree - Trips Logistics

- 1000 sq. ft. of warehouse space needed for 1000 units of demand
- Current demand $=100,000$ units per year
- Binomial uncertainty: Demand can go up by 20% with $p=0.5$ or down by 20% with $1-p=0.5$
Lease price $=\$ 1.00$ per sq. ft. per year
Spot market price $=\$ 1.20$ per sq. ft. per year Spot prices can go up by 10% with $p=0.5$ or down by 10\% with $1-p=0.5$
Revenue $=\$ 1.22$ per unit of demand
$k=0.1$

Calculating Net at Period 2

- Analyze the option of not signing a lease and using the spot market
- Start with Period 2 and calculate the profit at each node.
- Begin with Node 6:

For Node 6 ($D=144, p=\$ 1.45$) in Period 2:
C(node 6) $=144,000 \times 1.45=\$ 208,800$
$\mathrm{P}($ node 6$)=144,000 \times 1.22-\mathrm{C}($ node 6$)$

$$
=175,680-208,800=-\$ 33,120
$$

\square Continue with the other nodes of period 2.

Calculating Profit at all nodes of period 2

	Revenue	Cost $C(D=, p=, 2)$	Profit $\boldsymbol{P}(\boldsymbol{D}=, \boldsymbol{p}=, \mathbf{2})$
$D=144, p=1.45$	$144,000 \times 1.22$	$144,000 \times 1.45$	$-\$ 33,120$
$D=144, p=1.19$	$144,000 \times 1.22$	$144,000 \times 1.19$	$\$ 4,320$
$D=96, p=1.45$	$96,000 \times 1.22$	$96,000 \times 1.45$	$-\$ 22,080$
$D=144, p=0.97$	$144,000 \times 1.22$	$144,000 \times 0.97$	$\$ 36,000$
$D=96, p=1.19$	$96,000 \times 1.22$	$96,000 \times 1.19$	$\$ 2,880$
$D=96, p=0.97$	$96,000 \times 1.22$	$96,000 \times 0.97$	$\$ 24,000$
$D=64, p=1.45$	$64,000 \times 1.22$	$64,000 \times 1.45$	$-\$ 14,720$
$D=64, p=1.19$	$64,000 \times 1.22$	$64,000 \times 1.19$	$\$ 1,920$
$D=64, p=0.97$	$64,000 \times 1.22$	$64,000 \times 0.97$	$\$ 16,000$

Calculating Expected Profit at Nodes in Period 1

\square Expected profit at each node in Period 1 is the profit during Period 1 plus the present value of the expected profit in Period 2
\square Expected profit $\mathrm{EP}(D=, p=1)$ at a node is the expected profit over all four nodes in Period 2 that may result from this node
$\square \operatorname{PVEP}(D=, p=, 1)$ is the present value of this expected profit and $\mathrm{P}(D=, p=1)$, and the total expected profit, is the sum of the profit in Period 1 and the present value of the expected profit in Period 2

Calculating Expected Profit at Nodes in Period 1

\square From node $2(D=120, p=\$ 1.32$ in Period 1$)$, there are four possible states in Period 2
\square Therefore, the expected profit in Period 2 from node 2 is $E P($ node 2$)=0.25 \times[P($ node 6$)+\ldots+P($ node 10$)]=$

$$
=0.25 \times[-33,120+4,320-22,080+2,880=-\$ 12,000
$$

\square The present value of this expected value in Period 1 is $\operatorname{PVEP}($ node 2$)=\operatorname{EP}($ node 2$) /(1+k)=-\$ 12,000 /(1.1)=-\$ 10,909$
\square The total expected profit $\mathrm{P}($ node 2$)$ at node 2 in Period 1 is the sum of the profit in Period 1 at this node, plus the present value of future expected profits possible from this node

$$
\begin{aligned}
& P(\text { node } 2)=120,000 \times 1.22-120,000 \times 1.32+\text { PVEP(node } 2)= \\
& \quad=-\$ 12,000-\$ 10,909=-\$ 22,909
\end{aligned}
$$

- Continue with all nodes in period 1

Calculating Expected Profit in Period 0

\square For Period 0, the total profit P (node 1) is the sum of the profit in Period 0 and the present value of the expected profit over the four nodes in Period 1

$$
\begin{gathered}
E P(\text { node } 1)=0.25 \times[P(\text { node } 2)+P(\text { node } 3)+P(\text { node } 4)+P(\text { node } 5)] \\
==0.25 \times[-22,909+32,073-15,273)+21,382]=\$ 3,818 \\
P V E P(\text { node } 1)=E P(\text { node } 1) /(1+k)=\$ 3,818 /(1.1)=\$ 3,471 \\
P(\text { node } 1)=100,000 \times 1.22-100,000 \times 1.20+P V E P(\text { node } 1) \\
=\$ 2,000+\$ 3,471=\$ 5,471
\end{gathered}
$$

\square Therefore, the expected NPV of not signing the lease and obtaining all warehouse space from the spot market is given by NPV(Spot Market) $=\$ 5,471$

Evaluating the Fixed Lease option

$D=96, p=1.45 \quad 100,000$ sq. ft.

$$
0 \text { sq. ft. }
$$

$$
\$ 17,120
$$

$D=144, p=0.97 \quad 100,000$ sq. ft.
44,000 sq. ft.
\$33,000
$D=96, p=1.19$
100,000 sq. ft.
0 sq. ft.
$\$ 17,120$
$D=96, p=0.97$
100,000 sq. ft.
0 sq. ft.
$\$ 17,120$
$D=64, p=1.45$
100,000 sq. ft.
0 sq. ft.
$-\$ 21,920$
$D=64, p=1.19 \quad 100,000$ sq. ft.
0 sq. ft.
$-\$ 21,920$
14
$D=64, p=0.97 \quad 100,000$ sq. ft.
0 sq. ft.
$-\$ 21,920$

Moving to period 1

Node	$\boldsymbol{E P}(\boldsymbol{D}=, \boldsymbol{p}=1)$	Warehouse Space at Spot Price ($\$$)	$\begin{gathered} P(D=, p=, 1) \\ =D \times 1.22- \\ (100,000 \times 1+S \times p) \\ +E P(D=, p=1)(1 \\ +k) \end{gathered}$
$D=120, p=1.32$	$\begin{aligned} & 0.25 \times[P(\text { node } 6)+P(\text { node } 7) \\ & +\mathrm{P}(\text { node } 8)+\mathrm{P}(\text { node } 10)]= \\ & 0.25 \times(11,880+23,320+ \\ & 17,120+17,120)=\$ 17,360 \end{aligned}$	20,000	\$35,782
$D=120, p=1.08$	$\begin{aligned} & 0.25 \times(23,320+33,000+ \\ & 17,120+17,120)=\$ 22,640 \end{aligned}$	20,000	\$45,382
$D=80, p=1.32$	$\begin{aligned} & 0.25 \times(17,120+17,120- \\ & 21,920-21,920)=-\$ 2,400 \end{aligned}$	0	-\$4,582
$D=80, p=1.08$	$\begin{aligned} & 0.25 \times(17,120+17,120- \\ & 21,920-21,920)=-\$ 2,400 \end{aligned}$	0	-\$4,582

Decision Tree - Trips Logistics

\square Using the same approach for the lease option, NPV(Lease) $=\$ 38,364$
\square Recall that when uncertainty was ignored, the NPV for the lease option was \$60,182
\square However, the manager would probably still prefer to sign the three-year lease for 100,000 sq. ft. because this option has the higher expected profit

Evaluating the flexible lease option

$$
D=96, p=1.19
$$

96,000 sq. ft.
0 sq. ft.
\$21,1 20
$D=96, p=0.97$
96,000 sq. ft.
0 sq. ft.
\$21,1 20

$D=64, p=1.45$	64,000 sq. ft.	0 sq. ft.	$\$ 14,080$
$D=64, p=1.19$	64,000 sq. ft.	0 sq. ft.	$\$ 14,080$
$D=64, p=0.97$	64,000 sq. ft.	0 sq. ft.	$\$ 14,080$

Decision Tree - Trips Logistics

Node	$E P(D=, p=, 1)$	Warehouse Space at \$1 (W)	Warehouse Space at Spot Price (S	$\begin{gathered} P(D=, p=, 1) \\ =D \times 1.22-(W \times 1 \\ +S \times p)+E P(D=, \\ p=1)(1+k) \end{gathered}$
$\begin{aligned} & D=120, \\ & p=1.32 \end{aligned}$	$\begin{aligned} & 0.25 \times(11,880+ \\ & 23,320+21,120+ \\ & 21,120)=\$ 19,360 \end{aligned}$	100,000	20,000	\$37,600
$\begin{aligned} & D=120, \\ & p=1.08 \end{aligned}$	$\begin{aligned} & 0.25 \times(23,320+ \\ & 33,000+21,120+ \\ & 21,120)=\$ 24,640 \end{aligned}$	100,000	20,000	\$47,200
$\begin{aligned} & D=80 \\ & p=1.32 \end{aligned}$	$\begin{aligned} & 0.25 \times(21,120+ \\ & 21,120+14,080+ \\ & 14,080)=\$ 17,600 \end{aligned}$	80,000	0	\$33,600
$\begin{aligned} & D=80 \\ & p=1.08 \end{aligned}$	$\begin{aligned} & 0.25 \times(21,920+ \\ & 21,920+14,080+ \\ & 14,080)=\$ 17,600 \end{aligned}$	80,000	0	\$33,600

Comparison of all options

Option	Value
All warehouse space from the spot market	$\$ 5,471$
Lease 100,000 sq. ft. for three years	$\$ 38,364$
Flexible lease to use between 60,000 and 100,000 sq. ft.	$\$ 46,545$

Flexibility is worth $\$ 46,545-\$ 38,364=\$ 8,181$

Onshore or Offshore

\square D-Solar demand in Europe $=100,000$ panels per year
\square Each panel sells for $€ 70$
\square Annual demand may increase by 20 percent with probability 0.8 or decrease by 20 percent with probability 0.2
\square Build a plant in Europe or China with a rated capacity of 120,000 panels

D-Solar Decision

European Plant			Chinese Plant	
Fixed Cost (euro)	Variable Cost (euro)		Fixed Cost	Variable Cost
(yuan)	(yuan)			

Period 1
Period 2

Demand	Exchange Rate		Demand	Exchange Rate
112,000	8.64 yuan/euro		125,440	8.2944 yuan/euro

D-Solar Decision

- European plant has greater volume flexibility
- Increase or decrease production between 60,000 to 150,000 panels
- Chinese plant has limited volume flexibility
- Can produce between 100,000 and 130,000 panels
- Chinese plant will have a variable cost for 100,000 panels and will lose sales if demand increases above 130,000 panels
- Yuan, currently 9 yuan/euro, expected to rise 10\%, probability of 0.7 or drop 10%, probability of 0.3
- Sourcing decision over the next three years
- Discount rate $k=0.1$

D-Solar Decision

Period 0 profits $=100,000 \times 70-1,000,000-100,000 \times 40=€ 2,000,000$
Period 1 profits $=112,000 \times 70-1,000,000-112,000 \times 40=€ 2,360,000$
Period 2 profits $=125,440 \times 70-1,000,000-125,440 \times 40=€ 2,763,200$
Expected profit from onshoring $\quad=2,000,000+2,360,000 / 1.1+$ 2,763,200/1.21
= €6,429,091
Period 0 profits $=100,000 \times 70-8,000,000 / 9-100,000 \times 340 / 9$

$$
=€ 2,333,333
$$

Period 1 profits $=112,000 \times 70-8,000,000 / 8.64-112,000 \times 340 / 8.64$
= €2,506,667

Period 2 profits $=125,440 \times 70-8,000,000 / 8.2944-125,440 \times 340 / 8.2944=$ $€ 2,674,319$

Expected profit from off-shoring $=2,333,333+$ 2,506,667/1.1 +

2,674,319/1.21
$=€ 6,822,302$

D-Solar Decision at node 6:

- Period 2 evaluation - onshore - can produce all!

Revenue from the manufacture
and sale of 144,000 panels $=144,000 \times 70$
$=€ 10,080,000$

Fixed + variable cost
of onshore plant $=1,000,000+144,000 \times 40$
$=€ 6,760,000$

$$
\begin{aligned}
& P(D=144, E=10.89,2)=10,080,000-6,760,000 \\
& \quad=€ 3,320,000
\end{aligned}
$$

D-Solar Decision (onshore)

	D	E	Sales	Production Cost Quantity	Revenue (euro)	Cost (euro)	Profit (euro)
6	144	10.89	144,000	144,000	10,080,000	6,760,000	3,320,000
7	144	8.91	144,000	144,000	10,080,000	6,760,000	3,320,000
8	96	10.89	96,000	96,000	6,720,000	4,840,000	1,880,000
9	96	8.91	96,000	96,000	6,720,000	4,840,000	1,880,000
10	144	7.29	144,000	144,000	10,080,000	6,760,000	3,320,000
11	96	7.29	96,000	96,000	6,720,000	4,840,000	1,880,000
	64	10.89	64,000	64,000	4,480,000	3,560,000	920,000
13	64	8.91	64,000	64,000	4,480,000	3,560,000	920,000
14	64	7.29	64,000	64,000	4,480,000	3,560,000	920,000

D-Solar Decision

- Period 1 evaluation - onshore

$$
\begin{aligned}
& E P(D=120, E=9.90,1)=0.24 \times P(D=144, E=10.89,2)+ \\
& \quad 0.56 \times P(D=144, E=8.91,2)+ \\
& \quad 0.06 \times P(D=96, E=10.89,2)+ \\
& \quad 0.14 \times P(D=96, E=8.91,2) \\
& =0.24 \times 3,320,000+0.56 \times 3,320,000+ \\
& \quad 0.06 \times 1,880,000+0.14 \times 1,880,000 \\
& =€ 3,032,000 \\
& \\
& P V E P(D=120, E=9.90,1) \quad=E P(D=120, E=9.90,1) /(1+k) \\
& \quad=3,032,000 / 1.1=€ 2,756,364 \quad
\end{aligned}
$$

D-Solar Decision

- Period 1 evaluation - onshore

Revenue from manufacture and sale of 120,000 panels $=120,000 \times 70=€ 8,400,000$

Fixed + variable cost of onshore plant $\quad=1,000,000+120,000 \times 40$ $=€ 5,800,000$

$$
\begin{aligned}
& P(D=120, E=9.90,1)=8,400,000-5,800,000+ \\
& P V E P(D=120, E=9.90,1) \\
&= 2,600,000+2,756,364 \\
&= € 5,356,364
\end{aligned}
$$

Same for all nodes of period 1

 (onshore)| \boldsymbol{D} | \boldsymbol{E} | Sales | Production
 Cost Quantity | Revenue
 (euro) | Cost (euro) | Profit (euro) |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 120 | 9.90 | 120,000 | 120,000 | $8,400,000$ | $5,800,000$ | $5,356,364$ |
| 120 | 8.10 | 120,000 | 120,000 | $8,400,000$ | $5,800,000$ | $5,356,364$ |
| 80 | 9.90 | 80,000 | 80,000 | $5,600,000$ | $4,200,000$ | $2,934,545$ |
| 80 | 8.10 | 80,000 | 80,000 | $5,600,000$ | $4,200,000$ | $2,934,545$ |

Moving to period 0 (onshore)

- Period 0 evaluation - onshore

$$
\begin{aligned}
& E P(D=100, E=9.00,1)=0.24 \times P(D=120, E=9.90,1)+ \\
& \quad 0.56 \times P(D=120, E=8.10,1)+ \\
& \quad 0.06 \times P(D=80, E=9.90,1)+ \\
& \quad 0.14 \times P(D=80, E=8.10,1) \\
& =0.24 \times 5,356,364+0.56 \times 5,5356,364+ \\
& \quad 0.06 \times 2,934,545+0.14 \times 2,934,545 \\
& =€ 4,872,000 \\
& P V E P(D=100, E=9.00,1) \quad=E P(D=100, E=9.00,1) /(1+k) \\
& \quad=4,872,000 / 1.1=€ 4,429,091
\end{aligned}
$$

D-Solar Decision

- Period 0 evaluation - onshore

Revenue from manufacture
and sale of 100,000 panels $=100,000 \times 70=€ 7,000,000$
Fixed + variable cost of onshore plant $\quad=1,000,000+100,000 \times 40$ $=€ 5,000,000$

$$
\begin{aligned}
P(D= & 100, E=9.00,1)=8,400,000-5,800,000+ \\
& P V E P(D=100, E=9.00,1) \\
= & 2,000,000+4,429,091 \\
= & € 6,429,091
\end{aligned}
$$

Evaluating the Offshore decision

- Period 2 evaluation - offshore

Revenue from the manufacture and sale of 130,000 panels $\quad=130,000 \times 70$
= € $9,100,000$

Fixed + variable cost
of offshore plant $=8,000,000+130,000 \times 340$
$=52,200,000$ yuan

$$
\begin{aligned}
& P(D=144, E=10.89,2)=9,100,000-52,200,000 / 10.89 \\
& \quad=€ 4,306,612
\end{aligned}
$$

D-Solar Decision

\boldsymbol{D}	\boldsymbol{E}	Sales	Production Cost Quantity	Revenue (euro)	Cost (yuan)	Profit (euro)
144	10.89	130,000	130,000	$9,100,000$	$52,200,000$	$4,306,612$
144	8.91	130,000	130,000	$9,100,000$	$52,200,000$	$3,241,414$
96	10.89	96,000	100,000	$6,720,000$	$42,000,000$	$2,863,251$
96	8.91	96,000	100,000	$6,720,000$	$42,000,000$	$2,006,195$
144	7.29	130,000	130,000	$9,100,000$	$52,200,000$	$1,939,506$
96	7.29	96,000	100,000	$6,720,000$	$42,000,000$	958,683
64	10.89	64,000	100,000	$4,480,000$	$42,000,000$	623,251
64	8.91	64,000	100,000	$4,480,000$	$42,000,000$	$-233,805$
64	7.29	64,000	10,000	$4,480,000$	$3,560,000$	$-1,281,317$

D-Solar Decision

- Period 1 evaluation - offshore

$$
\begin{aligned}
& E P(D=120, E=9.90,1)=0.24 \times P(D=144, E=10.89,2)+ \\
& \quad 0.56 \times P(D=144, E=8.91,2)+ \\
& \quad 0.06 \times P(D=96, E=10.89,2)+ \\
& \quad 0.14 \times P(D=96, E=8.91,2) \\
& =0.24 \times 4,306,612+0.56 \times 3,241,414+ \\
& \\
& \quad 0.06 \times 2,863,251+0.14 \times 2,006,195 \\
& =€ 3,301,441 \\
& P V E P(D=120, E=9.90,1) \quad=E P(D=120, E=9.90,1) /(1+k) \\
& =3,301,441 / 1.1=€ 3,001,310
\end{aligned}
$$

D-Solar Decision

- Period 1 evaluation - offshore

Revenue from manufacture and sale of 120,000 panels $=120,000 \times 70=€ 8,400,000$

Fixed + variable cost of offshore plant $=8,000,000+120,000 \times 340$ $=48,800,000$ yuan

$$
\begin{aligned}
P(D= & 120, E=9.90,1)=8,400,000-48,800,000 / 9.90+ \\
& P V E P(D=120, E=9.90,1) \\
= & 3,470,707+3,001,310 \\
= & € 6,472,017
\end{aligned}
$$

D-Solar Decision

\boldsymbol{D}	\boldsymbol{E}	Sales	Production Cost Quantity	Revenue (euro)	Cost (yuan)	Expected Profit (euro)
120	9.90	120,000	120,000	$8,400,000$	$48,800,000$	$6,472,017$
120	8.10	120,000	120,000	$8,400,000$	$48,800,000$	$4,301,354$
80	9.90	80,000	100,000	$5,600,000$	$42,000,000$	$3,007,859$
80	8.10	80,000	100,000	$5,600,000$	$42,000,000$	$1,164,757$

D-Solar Decision

- Period 0 evaluation - offshore

$$
\begin{aligned}
& E P(D=100, E=9.00,1)=0.24 \times P(D=120, E=9.90,1)+ \\
& \quad 0.56 \times P(D=120, E=8.10,1)+ \\
& \quad 0.06 \times P(D=80, E=9.90,1)+ \\
& \quad 0.14 \times P(D=80, E=8.10,1) \\
& =0.24 \times 6,472,017+0.56 \times 4,301,354 \\
& \quad+0.06 \times 3,007,859+0.14 \times 1,164,757 \\
& =€ 4,305,580 \\
& \\
& \\
& P V E P(D=100, E=9.00,1) \quad=E P(D=100, E=9.00,1) /(1+k) \\
& \quad=4,305,580 / 1.1=€ 3,914,164 \quad
\end{aligned}
$$

D-Solar Decision

- Period 0 evaluation - offshore

Revenue from manufacture and sale of 100,000 panels $\quad=100,000 \times 70=€ 7,000,000$

Fixed + variable cost of onshore plant $\quad=8,000,000+100,000 \times 340$ $=€ 42,000,000$ yuan

$$
\begin{aligned}
P(D= & 100, E=9.00,1)=7,000,000-42,000,000 / 9.00+ \\
& P V E P(D=100, E=9.00,1) \\
= & 2,333,333+3,914,164 \\
= & € 6,247,497
\end{aligned}
$$

Decisions Under Uncertainty

1. Combine strategic planning and financial planning during global network design
2. Use multiple metrics to evaluate global supply chain networks
3. Use financial analysis as an input to decision making, not as the decision-making process
4. Use estimates along with sensitivity analysis
