Imagine

\square A limitless \& free world
\square In which manufacturing, transportation, warehousing, information sharing ... are ALL ...

- Without capacity constraint, without time delays, without costs!
\square In this world, we would not need to do any planning to anticipate the demand
\square This being not the case, we need to plan in order to be able to satisfy the demand
\square Answer questions that relate to the required capacity, production levels, outsource or not, inventory levels, etc

In today's world

\square Building and having the capacity needed has a cost and lead times are often long
\square Aggregate planning:
\square Process by which a company determines planned levels of capacity, production, subcontracting, inventory, stockouts, and pricing over a specified time horizon
\square Goal is to build a plan that will satisfy demand \& maximize profit
\square Decisions made at a product family (not SKU) level

- Time frame of 3 to 18 months: too early to plan production at SKU level, but too late to arrange for additional capacity
\square How can a firm best use the facilities it has?

Role of Aggregate Planning in a Supply Chain

\square Specify operational parameters over the time horizon
\square Production rate (unit per period)
\square Subcontracting: 1. yes / no? 2. Subcontracted capacity over the planning horizon?
\square Workforce (number of workers or capacity units needed)
\square Backlog (demand not satisfied for the planning horizon)

- Overtime
\square Inventory on hand (per period)
\square Machine capacity level
\square All supply chain stages should work together on an aggregate plan that will optimize supply chain performance

The Aggregate Planning Problem

\square Given the demand forecast for each period in the planning horizon, determine the production level, inventory level, and the capacity level for each period that maximizes the firm's (supply chain's) profit over the planning horizon
\square Specify the planning horizon (typically 3-18 months)
\square Specify the duration of each period
\square Specify key information required to develop an aggregate plan

Information Needed for an Aggregate Plan

\square Aggregate demand forecast F_{t} for each Period t over T periods
\square Production costs

- Labor costs, regular time (\$/hr) and overtime (\$/hr)
- Subcontracting costs (\$/hr or \$/unit)
\square Cost of changing capacity - hiring or layoff (\$/worker), adding or reducing machine capacity (\$/machine)
\square Labor/machine hours required per unit
\square Inventory holding cost (\$/unit/period)
\square Stockout or backlog cost (\$/unit/period)
\square Constraints - overtime, layoffs, capital available, stockouts, backlogs, from suppliers

Outputs of Aggregate Plan

Production quantity from regular time, overtime, and subcontracted time, \# of workers needed per category, suppliers purchase levels

- Inventory held; warehousing space needed to store it, and working capital required
Backlog/stockout quantity - used to determine customer service levels
Workforce hired / laid off - watch out early for labor issues Machine capacity increase/decrease - determine new equipment for purchase, or available idle to sell

A poor aggregate plan can result in lost sales, lost profits, excess inventory, or excess capacity

Identifying Aggregate Units of Production

\square Aggregate unit should be identified in a way that the resulting production schedule can be accomplished in practice
\square Focus on the bottlenecks when selecting the aggregate unit and identifying capacity and production times
\square Account for activities such as setups and maintenance, that eat up capacity and time, but do not result in any production.

The Red Tomato Tools Company

Family	$\begin{aligned} & \text { Material } \\ & \text { Cost/ } \\ & \text { Unit (\$) } \end{aligned}$	Revenue / Unit (\$)	Setup Time/Ba tch (hour)	Average Batch Size	Production IIme/ Unit (hour)	Net Production Time/Unit (hour)	Percentage Share of Units Sold
A	15	54	8	50	5.60	5.76	10
B	7	30	6	150	3.00	3.04	25
C	9	39	8	100	3.80	3.88	20
D	12	49	10	50	4.80	5.00	10
E	9	36	6	100	3.60	3.66	20
F	13	48	5	75	4.30	4.37	15

Some simple metrics

- Net production time / unit $=$

$$
=5.60+8 / 50=5.76 \mathrm{hrs}
$$

- Weighted average approach

Material cost per aggregate unit

$$
\begin{aligned}
= & 15 \times 0.10+7 \times 0.25+9 \times 0.20 \\
& +12 \times 0.10+9 \times 0.20+13 \times 0.15 \\
= & \$ 10
\end{aligned}
$$

- Similarly

Revenue per aggregate unit $=\$ 40$
Net production time per aggregate unit $=4.00$ hours

Aggregate Planning Strategies

\square Trade-off between capacity, inventory, backlog/lost sales: to lower inventory cost, increase capacity cost, or delay delivery to customer
\square Chase strategy - using capacity as the lever
\square Time flexibility from workforce or capacity strategy using utilization as the lever
\square Level strategy - using inventory as the lever
\square Tailored or hybrid strategy - a combination of strategies

Chase Strategy

\square Production rate is synchronized with demand rate by varying machine capacity or hiring/laying off employees as demand rate varies
\square Vary machine capacity or hire and lay off workers as demand varies
\square Often difficult to vary capacity and workforce on short notice
\square Expensive if cost of varying capacity is high
\square Negative effect on workforce morale
\square Results in low levels of inventory
\square Used when inventory holding costs are high and costs of changing capacity are low

Time Flexibility Strategy

\square Use excess machine capacity, if there is one
\square Workforce stable, number of hours worked varies
\square Use overtime or a flexible work schedule
\square Flexible workforce, avoids morale problems
\square Low levels of inventory, lower utilization
\square Used when inventory holding costs are high and capacity is relatively inexpensive

Level Strategy

\square Use inventory as the level
\square Stable machine capacity and workforce levels, constant output rate
\square Inventory levels fluctuate over time
\square Inventories carried over from high to low demand periods
\square Better for worker morale
\square Large inventories and backlogs may accumulate
\square Used when inventory holding and backlog costs are relatively low

Aggregate Planning Using Linear Programming

\square Red Tomato Tools
\square Highly seasonal demand

- Develop a forecast

Monith	Demand Forecast
January	1,600
February	3,000
March	3,200
April	3,800
May	2,200
June	2,200

Red Tomato Tools company

\square Each tool is sold through retailers for 40\$
\square Starting inventory of 1,000 tools

- Workforce of 80 employees; 20 working days in each month
$\square 8$ hour per day for each employee +2 overtime
\square Capacity is determined by total labor hours worked
\square No limits on subcontracting, inventory and stockouts/backlogs
\square All stockouts are backlogged and supplied from next months production
\square Inventory costs appear at the end of each month
\square Pay $\$ 4 / \mathrm{hr}$ for regular time; OT has to be $\leq 10 \mathrm{hrs} / \mathrm{mo}$
\square What is the optimal aggregated plan that allows at the end of June to have at least 500 units of inventory

Costs for Red Tomato Tools

fem

Material cost
Inventory holding cost
Marginal cost of
stockout/backlog
Hiring and training costs
Layoff cost
Labor hours required
Regular time cost

Overtime cost
Cost of subcontracting

Cost

\$10/unit
\$2/unit/month
\$5/unit/month
\$300/worker
\$500/worker
4/unit
$\$ 4 /$ hour (no of units produced or regular time $=40 / \mathrm{mo}$) \$6/hour
\$30/unit

Decision Variables

For month $t=1, \ldots, 6$
$W_{t}=$ Workforce size for month t
$H_{t}=$ Number of employees hired at the beginning of month t
$L_{t}=$ Number of employees laid off at the beginning of month t
$P_{t}=$ Production in month t
$I_{t}=$ Inventory at the end of month t
$S_{t}=$ Number of units stocked out or backlogged at the end of month t
$C_{t}=$ Number of units subcontracted for month t
$O_{t}=$ Number of overtime hours worked in month t

Objective Function

- Minimize (assume half-year horizon)
(Regular-time labor cost + Overtime labor cost + Cost of hiring and layoffs + Cost of holding inventory + Cost of stocking out + Cost of subcontracting + Material cost)

Constraints

1. Workforce, hiring, and layoff constraints

$$
W_{t}=W_{t-1}+H_{t}-L_{t} \quad \text { With } \mathrm{W}_{0}=80
$$

2. Capacity constraints

$$
P_{t} \quad 40 W_{t}+\frac{O_{t}}{4}
$$

All for $t=1, \ldots, 6$
3. Inventory balance constraints

$$
I_{t-1}+P_{t}+C_{t}=D_{t}+S_{t-1}+I_{t}-S_{t} \quad \text { With } \mathrm{I}_{0}=1,000
$$

4. Overtime limit constraints

$$
O_{t} \quad 10 W_{t}
$$

Optimal Aggregate Plan

Total cost over planning horizon $=\$ 422,660$
Revenue over planning horizon $=40 \times 16,000=\$ 640,000$

Period t	No. Hired H_{t}	No. Laid Off, L_{t}	Work force Size, W_{t}	Overtime, O_{t}	Inventory, I_{t}	$\begin{gathered} \text { Stock } \\ \text {-out, } \\ S_{t} \end{gathered}$	Subcontract, C_{t}	Total Production, P_{t}
0	0	0	80	0	1,000	0	0	
1	0	16	64	0	1,960	0	0	2,560
2	0	0	64	0	1,520	0	0	2,560
3	0	0	64	0	880	0	0	2,560
4	0	0	64	0	0	220	140	2,560
5	0	0	64	0	140	0	0	2,560
6	0	0	64	0	500	0	0	2,560

Calculating Averages

$$
\text { Average inventory }=\frac{\left(I_{0}+I_{T}\right) / 2+\left(\begin{array}{c}
T-1 \\
t=1
\end{array} I_{t}\right)}{T}
$$

Average flow time $=$ Average inventory $/$ throughput (Little' law)
$\begin{gathered}\text { Average time } \\ \text { in inventory }\end{gathered}=\frac{\left(I_{0}+I_{T}\right) / 2+\left(\begin{array}{c}T-1 \\ t=1\end{array} I_{t}\right)}{T} / \frac{\left(\begin{array}{l}T-1 \\ t=1\end{array} D_{t}\right)}{T}$

Calculating Averages

 $\begin{aligned} & \begin{array}{l}\text { Average } \\ \text { seasonal } \\ \text { inventory }\end{array}\end{aligned}=\frac{\left(I_{0}+I_{6}\right) / 2+\left(\sum_{t=1}^{5} I_{t}\right)}{T}=\frac{5,250}{6}=875$Average flow time $=\frac{875}{2,667}=0.33=0.33$ months

Impact of higher demand variability

Month	Demand Forecast
January	1,000
February	3,000
March	3,800
April	4,800
May	2,000
June	1,400

$\begin{aligned} & \text { Average } \\ & \text { seasonal } \\ & \text { inventory }\end{aligned}=\frac{\left(I_{0}+I_{T}\right) / 2+\left(\sum_{t=1}^{T-1} I_{t}\right)}{T}=\frac{6,310}{6}=1,052+10$

Optimal Aggregate Plan

Total cost over planning horizon $=\$ 433,080$

	No. Hired,	No. Laid Off,	Workforce Size, W_{t}	Overtime, $\boldsymbol{O}_{\boldsymbol{t}}$	$\boldsymbol{I}_{\boldsymbol{t}}$	Inventory,		
Stockout, $\boldsymbol{S}_{\boldsymbol{t}}$	Subcontract, $\boldsymbol{C}_{\boldsymbol{t}}$	Total Production, $\boldsymbol{P}_{\boldsymbol{t}}$						
0	0	0	80	0	1,000	0	0	
1	0	16	64	0	2,560	0	0	2,560
2	0	0	64	0	2,120	0	0	2,560
3	0	0	64	0	880	0	140	2,560
4	0	0	64	0	0	1,220	0	2,560
5	0	0	64	0	0	660	0	2,560
6	0	0	64	0	500	0	0	2,560

Average flow time $=\frac{1,052}{2,667}=0.39$ months

Red Tomato Tools

\square Lower hiring and layoff costs (by 50\$ each)

Total cost over planning horizon $=\$ 412,780$
$\begin{gathered}\begin{array}{c}\text { Average } \\ \text { seasonal } \\ \text { inventory }\end{array}\end{gathered}=\frac{\left(I_{0}+I_{T}\right) / 2+\left(\sum_{t=1}^{T-1} I_{t}\right)}{T}=\frac{2,450}{6}=408$

$$
\text { Average flow time }=\frac{408}{2,667}=0.15 \text { months }
$$

Red Tomato Tools

Period, t	No. Hired, $\boldsymbol{H}_{\boldsymbol{t}}$	No. Laid Off, L_{t}	Workforce Size, W_{t}	Overtime, O_{t}	Inventory, I_{t}	Stockout, S_{t}	Subcontract, C_{t}	Total Production P_{t}
0	0	0	80	0	1,000	0	0	
1	0	35	45	0	1,200	0	0	1800
2	0	0	45	0	0	0	0	1800
3	42	0	87	0	280	0	0	3,480
4	0	0	87	0	0	20	20	3,480
5	0	26	61	0	220	0	0	2,440
6	0	0	62	0	500	0	0	2,480

Forecast Error in Aggregate Plans

\square Forecast errors must be considered
\square Safety inventory
\square Safety capacity
\square Use overtime as a form of safety capacity
\square Carry extra workforce permanently as a form of safety capacity

- Use subcontractors as a form of safety capacity
\square Build and carry extra inventories as a form of safety inventory
\square Purchase capacity or product from an open or spot market as a form of safety capacity

