4.
 Introduction to Prescriptive Analytics

STEVENS INSTITUTE of TECHNOLOGY THE INNOVATION UNIVERSITY

Why is Decision Making difficult?

\square The biggest sources of difficulty for decision making:
\square Uncertainty

- Complexity of Environment or of System
\square Difficulty of Measuring or even Studying alternative Strategies
\square Do NOT procrastinate!
\square Do NOT hide your head under the sand!
\square Do NOT ignore data \& evidence!

Simple pieces for advice

\square Overcome your anxieties
\square Let go your inner perfectionist
\square Maintain a balance between
\square Analysis/deliberation and action
\square Data gathering and obtaining of results
\square Alternative goals (that might even be conflicting) - remember: balanced scorecard
\square Quantitative vs. qualitative approaches
\square Manage Meetings (Group decision making)
\square Hidden agendas, fights, late starts, topic switching, ...

- Create Shared Understanding
- Try for Consensus at least about the problem

Can we avoid wrong decisions?

\square There is NO such thing as a perfect decision maker. Even with all the supercomputers in the world, you will STILL make mistakes
\square Difference between WRONG vs. BAD decision: You cannot avoid some bad decisions, but TRY to avoid the bad ones!
\square Difference between outcomes and process!
\square What are the key decision TRAPS?
\square Control the process

Rule 1: Avoid the decision traps

\square Status Quo trap
\square Anchoring trap
\square Confirming evidence trap
\square And more ...
\square How do you avoid decision traps?

Rule 2: Follow the rational process

\square The importance of analytics \& modeling!

Solving the right problem

\square Better have an approximate solution to today's problem than an optimal solution to yesterday's problem
\square Make sure you get problem statement right
\square Objective (often multiple conflicting objectives)
\square Constraints (often too many)

- Test with a known solution
\square Data Quality is key
- Garbage in, garbage out
\square Make sure you always output a solution
\square Relax the problem, move constraints to objective
- Handle the computational time
- Trade offs among solution quality vs feasibility vs optimality

Basic concepts \& decision models

Prescriptive Decision Models help decision makers identify the best solution:
Optimization - finding values of decision variables that minimize (or maximize) something such as cost (or profit).

- Decision Variables - the variables whose values the decision maker is allowed to choose.
\square Objective function - the equation that minimizes (or maximizes) the quantity of interest.
- Constraints - limitations or restrictions that must be satisfied.

Basic concepts \& decision models

- Feasible solution - is any set of values of the decision variables that satisfies all of the constraints.
- Feasible region - the set of all feasible solutions.
- Infeasible solution - is a solution where at least one constraint is not satisfied.
- Optimal solution - values of the decision variables at the minimum (or maximum) point that satisfy some necessary optimality conditions
- Global and local optimality - A local optimum is a solution that is optimal within a neighboring set of solutions. Global optimum is the optimal solution among all possible solutions

Evolution \& Quality of Information

Depending on the Quality of Information:
\square Deterministic models have inputs that are known with certainty.
\square Stochastic models have one or more inputs that are not known with certainty.
Depending on the Evolution of Information:
\square Static models where all inputs are known in advanced (with certainty or uncertainty).
\square Dynamic models where input data is revealed in real time during the planning horizon.

Types of Deterministic Models

\square Linear versus Nonlinear (convex optimization)
\square Linear/nonlinear functions for objective and/or constraints (LP / NLP)
\square Discrete versus Continuous
\square Continuous, integer, binary and/or mixed integer decision variables (ILP / IP / MIP / MILP / MINLP)
\square Convex versus non Convex
\square Quadratic Programming (QP / MIQP)
\square Unconstrained: No constraints
\square Dynamic Programming: Solved in stages
\square Combinatorial Optimization

Optimization Methods

\square Algorithms are systematic procedures used to find optimal solutions to decision models.
\square Exact Mathematical Programming algorithms provide guarantee for finding the (global) optimum \square Simplex, Interior Point (Barrier), Complete Enumeration, Branch and Bound/Cut/Price, Gradient Methods...
\square Heuristic algorithms trade optimality for efficiency and they are used to find high quality solutions in a reasonable amount of time.
\square Construction heuristics, Local Search, Evolutionary and Genetic Algorithms, Swarm Intelligence...

A simple problem for you

\square You start working tomorrow as a Production Manager in a Manufacturing Company:
\checkmark Producing 50 different products (or variations)
\checkmark Out of 15 resources (raw materials, machine -hours, man hours by speciality, ...)
\checkmark All 50 products PROFITABLE!
\checkmark Whatever quantity we make of each product (within our capacities) can be sold (we are small compared to the size of the market)
> Our ONLY criterion (to start with) is PROFITABILITY (i.e. no market share, ...)

Question:

- How many out of the 50 products would you consider reasonable to produce?
K

All 50 ? 40 ? 30 ? 15 ? 5 ? 1 ?

Do you need more info to answer?
WHY?

Why? Consider a simple case ...

\checkmark A company is producing 50 products out of 1 resource \checkmark Product P_{i} requires Q_{i} units of the resource to be produced $\checkmark 1$ unit of product P_{i} generates revenue R_{i}

	Products			
	$\mathbf{1}$	2	$\ldots \ldots$	50
\mathbf{Q}	\mathbf{Q}_{1}	\mathbf{Q}_{2}		\mathbf{Q}_{50}
\mathbf{R}	\mathbf{R}_{1}	\mathbf{R}_{2}		\mathbf{R}_{50}

How many products to produce?

Assume that all production can be sold!
\square Our objective is to max revenue!

- Best strategy is to produce the ONE product that maximizes the ratio:

(REMEMBER: BEST VALUE FOR MONEY)

Extension ...

\square To two resources
\square Generally

KEY CONCLUSIONS

Do NOT spread yourself too thin!
Put your resources where they will generate the most output!

This is a result of the Linearity assumption
${ }^{\circ}$ Use as a YARDSTICK!

Generally, Optimization ...

\square... helps businesses make complex decisions and trade-offs about limited resources
\square Discover previously unknown options or approaches
\square Automate and streamline decisions

- Compliance with business policies and regulations
\square Explore more scenarios and alternatives
- Understand trade-offs and sensitivities to various changes
- Gain insights into input data

■ View results in new ways

Introduction to Linear Programming Optimization

An Example

- Manufacturing company
- Producing 2 products: P1 \& P2
- Out of 3 raw materials: A, B, C
- Products sell for 200 \& 300 euros per unit
- Company has available stock for 30,20 and 36 units
- Bill-of-materials:

Raw Material	P1 Products	Available Stock	
	1	2	
A	1	1	30
B	2	1	20
C	200	300	36
Price			

Question: What is the best production plan?
(i.e. maximizing revenue)

Try alternative solutions?

- $P_{1}=20$

$P_{2}=20$	$?$
$P_{2}=10$	$?$
$P_{2}=20$	$?$
$P_{2}=5$	$?$
$P_{2}=15$	$?$
$P_{2}=12$	$?$

- $P_{1}^{1}=10$
- $P_{1}=15$
- $P_{1}=5$
- $P_{1}=5$
$P_{2}=12$
?

Raw Material	Products		Available Stock
	P1	$\mathbf{P 2}$	
A	1	2	30
B	1	1	20
C	2	1	36
Price	200	300	

Questions: Are the above plans feasible?
If feasible, are they the best?

Formulation of a model (3 steps) ...

A. Determine decision variables
$\mathrm{x}_{1}=$ production quantity of P 1
$\mathrm{x}_{2}=$ production quantity of P2
B. Determine objective : MAX REVENUE (Z)

$$
z=200 x_{1}+300 x_{2}
$$

C. Determine constraints (Limited Resources) Limited $\mathrm{A} \rightarrow \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 30$ Limited $\mathrm{B} \rightarrow \mathrm{x}_{1}+\mathrm{x}_{2} \leq 20$ Limited $C \rightarrow 2 x_{1}+x_{2} \leq 36 \quad x_{1}, x_{2} \geq 0$

Graphical representation of a constraint

Graphical Analysis of Constraints

Putting all constraints together

The FEASIBLE region

1. All points within the shaded area satisfy the constraints with Inequality, i.e. leave slack resources!
2. All points on the boundaries (except the corner points) utilize one resource completely, but leave slack resources of the other two!
3. The corner points III and IV utilize two resources fully!

Getting to the optimal plan

\square Therefore, the OPTIMAL PRODUCTION is given by point III which is the intersection of constraints $(A) \&(B)$!
\square At this CORNER POINT, resources $(\mathrm{A}) \&(\mathrm{~B})$ are FULLY UTILIZED, whereas resource (C) is not!
To determine point III, solve $A \& B$ as equalities, simultaneously:

$$
\left.\begin{array}{l}
x_{1}+2 x_{2}=30 \\
x_{1}+x_{2}=20
\end{array}\right] \square x_{1}^{*}=x_{2}^{*}=10 ; z^{*}=5,000
$$

Sensitivity Analysis

What happens if the prices of two products change?

\Rightarrow Assume the objective function is:

$$
Z=c_{1} x_{1}+c_{2} x_{2} \quad\left(\text { with } c_{1}=200, c_{2}=300\right)
$$

$>$ By changing the prices c_{1} and c_{2}, the slope, of the objective function changes:

- For small variations, same optimum remains!
- For large variations, the optimum "moves" to a "neighboring" corner
- The critical factor is not the values of the prices, but their relative ratio

Sensitivity Analysis

Specifically:

NOTE:

1. Optimal point is ALWAYS A CORNER POINT !
2. Even if price of $\mathrm{P} 1\left(c_{1}\right)$ increases by 30%, WE DO NOT produce more of P 1 !!!
3. When the price of $P 1$ exceeds that of $P 2$ (i.e. $c_{1} / c_{2} \geq 1$), only then do we change the production plan, and we change it drastically.

The new production plan will be at corner IV [utilizing (B) and (C) with

$$
x_{1}=16 \text { and } x_{2}=4!!
$$

Sensitivity Analysis

What happens if the availabilities of the resources change?

Assume that availability of A becomes 29 instead of 30
-How do you expect the strategy to change?
-How do you expect the bottom line to change?
By changing the prices b_{A} the feasible region "decreases"!
Even for small variations of the critical resources, the strategy changes!

So does the bottom line!
This is radically different from the previous result (prices)!

General Formulation of LP Problems

Determine the values $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for activities ($1,2, \ldots, n$)
so as to:

$$
\operatorname{Max} Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

subject to:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{gathered}
$$

Variations of the Above Standard Form

- Minimization objective
- Constraints of the form \geq, or Constraints of the form $=$
- Variables $x_{i} \leq 0$, or Variables x_{i} without constraint

Assumptions of Linear Programming

1. LINEARITY
 2. DIVISIBILITY
 3. CERTAINTY

Linearity

(5) Linear graph vs. non-linear graph
(5) Proportionality of output to the input

Examples of linear relationships
\checkmark production of products vs. time
\checkmark transportation costs vs. weight (usually)
\checkmark distance traveled vs. time (with const. speed)
(1) Examples of non-linear relationships
\checkmark Economics of scale
\checkmark The "typist example"
\checkmark transportation costs with economies or discounts
Examples of piecewise linear relationships
\checkmark approximations to non-linear relationships

Linear Relation Input - Output

Always remember: The change in the output for a given change of input is constant at every value of the input

Example:
$y=20-4 x_{1}+2 x_{2}$

x_{1}	y	Δx_{1}	Δy
0	$20+2 x_{2}$	-	-
1	$16+2 x_{2}$	1	-4
2	$12+2 x_{2}$	1	-4
3	$8+2 x_{2}$	1	-4
4	$4+2 x_{2}$	1	-4
5	$2 x_{2}$	1	-4

d

Divisibility

Activities can take any value, i.e. not necessarily integers

Examples:

\Rightarrow hours of operation of a machine
\Rightarrow gallons of petrol
\Rightarrow pounds of wheat
\Rightarrow budget, etc.
Integer variables: $\quad \Rightarrow$ no. of branches of a bank
\Rightarrow no. of employees
\Rightarrow no. of books printed, etc.
In this case use INTEGER PROGRAMMING.

Note: Even then, approximation using LP is possible if the values are big! In this case ... round-off to the nearest integer.
Approximation is not possible for $0 / 1$ problems !!!

Certainty

All parameters of the problem are known, i.e.
\Rightarrow Constraints in the objective function (prices)
\Rightarrow RHS (availabilities)
\Rightarrow Constants of the matrix (specifications of production)

Note: Even if not known, we can do a Sensitivity Analysis !

Optimization Overview

\square Variables:

$$
x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

\square Objective:
$\min f(x)$
\square Subject to Functional and Regional Equations and Constraints:

- Sometimes additional constraints:
- Binary
- Integer
- Sometimes uncertainty in

$$
\left\{\begin{array}{l}
x \in X \\
g(x)=b \\
h(x) \geq k
\end{array}\right.
$$ parameters (stochastic optimization)

Example: Asset \& Liability Management

- Loans
\rangle short-term (12\%)
\diamond medium-term (10\%)
\checkmark long-term (8\%)
-Stocks
\diamond average return (15\%)
- Oblig. deposits at the Central Bank
\diamond interest $=4 \%$
- Cash
- Current Accounts \diamond total available $=\$ 10 \mathrm{bn}$
- Deposit Accounts \diamond total available $=\$ 45$ bn
- Deposits: time deposits
\diamond total available $=\$ 45$ bn

Special considerations

a) Liquidity:
$5 \%, 3 \%$ and 1% of available for each category of deposits
b) Loans Limitations:
short-term between 10% and 15% of total deposits
long-term between 15\% and 20\% of total deposits
c) Obligatory Deposits (to the Central Bank):
at least 8% of total deposits

Determine the optimal structure of the Bank's assets (to max total Return on Assets)

The model

Let $x_{i}=\%$ of total deposits placed in asset i
$\mathrm{i}=1$ short term loans
$\mathrm{i}=2$ medium-term loans
$i=3$ long-term loans
$\mathrm{i}=4$ stocks
i= 5 obligatory placements
$\mathrm{i}=6$ cash
$\operatorname{Max} Z=0.12 x_{1}+0.10 x_{2}+0.08 x_{3}+0.15 x_{4}+0.04 x_{5}$ s.t.

0.10	\leq	x_{1}	\leq	0.15
0.15	\leq	x_{3}	\leq	0.20
	x_{5}	\geq	0.08	
$x_{6} \geq[(0.05)(10)+(0.03)(45)+(0.01)(45)] / 100=0.0185(=1.85 \%)$				
$x_{1}+x_{2}+\ldots+x_{6}=1$				
$x_{i} \geq 0 \quad i=1,2, \ldots, 6$				

Basic economic concepts - Duality

Example: The diet problem

A Consumer's diet should include daily at least 9 vitamins A and 19 vitamins C. The Consumer visits the local supermarket and determines 6 foods (F1, ..., F6) that include these vitamins, as follows:

Vitamins	Contents per 100 gm						
	F1	F2	F3	F4	F5	F6	
A	1	0	2	2	1	2	
C	0	1	3	1	3	2	
Price / 100 gm	35	30	60	50	25	22	

Assuming that he has no preference among the 6 foods, his problem is to select the MINIMUM COST DIFTI

The model

Mathematical Model

Determine $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=$ quantities of foods to buy

$$
\text { MIN Z }=35 x_{1}+30 x_{2}+60 x_{3}+50 x_{4}+25 x_{5}+22 x_{6}
$$

s.t.

$$
\begin{array}{rlr}
x_{1}+2 x_{3}+2 x_{4}+x_{5}+2 x_{6} & \geq & 9 \\
x_{2}+3 x_{3}+x_{4}+3 x_{5}+2 x_{6} & \geq & 19 \\
x_{1}, \ldots, x_{6} & \geq & 0
\end{array}
$$

Solution

$$
x_{5}=5, x_{6}=2, x_{1}=\ldots=x_{4}=0 \quad Z=169
$$

Some questions...

1. Why not buy any of the other foods?
2. What would it take to buy them?
3. What happens if the doctor changes the prescription?
4. What is competition, and what would competition do?

Vitamins	Contents per 100 gm						
	F1	F2	F3	F4	F5	F6	
A	1	0	2	2	1	2	
C	0	1	3	1	3	2	
Price / 100 gm	35	30	60	50	25	22	

The competition

\square The pharmacist
\square What is his/her objective?
\square What are his/her constraints?
\square Determine prices P_{A} and P_{C} for the vitamins, so that he/she maximizes his/her revenue while staying competitive!
\square Can we formulate an LP to solve it?

The model

Determine $\left(P_{A}, P_{C}\right)=$ prices of vitamins A, C

s.t.	MAX $\Theta=9 \mathrm{P}_{\mathrm{A}}+19 \mathrm{P}_{\mathrm{C}}$		
	$\mathrm{P}_{\mathrm{A}} \quad \leq$	35	$\left(F_{1}\right)$
	$\mathrm{P}_{\mathrm{C}} \leq$	30	$\left(F_{2}\right)$
	$2 \mathrm{P}_{\mathrm{A}}+3 \mathrm{P}_{\mathrm{C}} \leq$	60	$\left(F_{3}\right)$
	$2 \mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{C}} \leq$	50	$\left(\mathrm{F}_{4}\right)$
	$\mathrm{P}_{\mathrm{A}}+3 \mathrm{P}_{\mathrm{C}} \leq$	25	$\left(F_{5}\right)$
	$2 \mathrm{P}_{\mathrm{A}}+2 \mathrm{P}_{\mathrm{C}} \leq$	22	$\left(F_{6}\right)$
	$\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{C}} \quad \geq$	0	

The solution

$\square P_{A}=4$. . Dual Price of vitamin A
$\square P_{C}=7$. Dual Price of vitamin C
$\square \Theta=169$. . Max Revenue
\square Can you explain this?
\square What is the meaning of these dual prices?
\square What do they mean to the customer's budget?
\square What are the surplus costs?

Dual Prices and Surplus Costs

\square Dual prices give us the change in the objective function value if the RHS changes by 1 unit!
\square For how long is this dual price valid?
\square Is the dual price increasing or decreasing as we increase the RHS (availability)? Why?
\square Surplus cost gives us the change that has to occur to a non-basic variable to become basic!
\square Remember: if $x>0 \ldots$ then ... Surplus cost $=0$, AND
$x=0 \ldots$ then ... Surplus cost $>0 \ldots$ Can you explain?
\square Is it clear how many basic variables we will have?
\square Sensitivity analysis gives us the range of values in the RHS (or in the objective function) where the strategy (or the dual prices remain constant.

The charcoal example

Three important managerial questions

\square Suppose next week the doctor changes the prescription from 9 A's and 19 C's to 10 A's and 19 C's. Will this change the budget of the consumer? If so, by how much?
\square By how much should the supermarket lower the prices of the vitamins not sold, in order to make them attractive?
\square Suppose there is a new food with 3 A's, and 5 C's which should sell at 59c. Should the supermarket get this new food?

Dual Prices

\square The dual price of a resource is:
\square Internal Value of this resource!
\square How much it is worth to us!
\square How much the objective function would increase if we had 1 more unit available!
\square The dual price depends:
\square On the availability of this resource
\square On the efficiency of our technology
\square On the brand name and the prices of our finished products
\square Dual prices of the same resource are different across users, and the dual price is different from its price

The Dual Price $=$ The Real Value

\square It is very important to know the dual price of a resource:
\square We know how much and at what price we should buy them in the market
\square We determine our "really valuable" resources
\square We identify good opportunities to buy
\square We can "price-out" new products or activities and calculate their profitability
\square Of course, we can also "price-out" existing products or activities
\square Example: a new food appears with 4A's and 2C's, costing 47c

- would the customer prefer it?
\square REMEMBER: A DUAL PRICE FOR EVERY CONSTRAINT!

Surplus Cost

\square The surplus cost of a variable is the change required in the price of this product ...
$\square \ldots$ to make it competitive in the market!
\square... to start buying it!
$\square \ldots$ to raise its activity level to zero!
$\square \ldots$ to make this variable BASIC!
\square A Surplus cost exists ONLY if the variable is zero!
\square Otherwise, its activity level is already positive!

Surplus Cost $=$ Extra Cost

\square It is "connected" to the dual price...
\square We can validate the surplus cost of an activity or a product by calculating the difference
Surplus Cost =
= Price of a product - "Priced-out" sum of values of its resources
\square It is very important we know the surplus costs of our products... this way we will know:
\square How much we can reduce prices!
\square Which are the "hopeless" products!
\square How we compare with competition! ... and, what happens if competition's prices are lower, even after the reduction of surplus cost?

Remember

\square Every constraint is associated with a DUAL PRICE
\square Try to understand what it means for every constraint ...
\square Can the dual price be zero? When?
\square Every variable is associated with a SURPLUS COST
\square Try to understand what it means for every variable ...
\square Can the surplus cost be zero? When?
\square Dual prices and surplus costs ARE RELATED \square... though pricing out ...
\square Dual prices and Surplus costs can be read out of the SOLVER output

Sensitivity Analysis for LPs

- An excellent way to address UNCERTAINTY using LP
\square Often it is useful to perform sensitivity analysis to see how (or if) the optimal solution changes as one or more inputs change.
- The Solve dialog box offers you the option to obtain a sensitivity report.
- Solver's sensitivity report performs two types of sensitivity analysis:

1. on the coefficients of the objectives, the c's, and
2. on the right hand sides of the constraints, the b's.

Example: A Transportation problem

\square Oil is to be transported from 4 refineries (A, B, C, D) to 3 depots ($1,2,3$)
\square The availability in each refinery (in tanker loads) is: 22, 41, 27, 10
\square The demand to be satisfied at every depot (in tanker loads) is: $30,45,14$

Depots

		1	2	3
	A	90	30	120
	B	60	60	90
	C	30	180	60
	D	120	150	30

From the SOLVER output

Target Cell (Min)			
Cell	Name	Original Value	Final Value
\$E\$9	Cost	0.00	3780.00
Adjustable Cells			
Cell	Name	Original Value	Final Value
\$B\$5	Refinery 1 Depot 1	0.00	0.00
\$C\$5	Refinery 1 Depot 2	0.00	22.00
\$D\$5	Refinery 1 Depot 3	0.00	0.00
\$B\$6	Refinery 2 Depot 1	0.00	3.00
\$C\$6	Refinery 2 Depot 2	0.00	23.00
\$D\$6	Refinery 2 Depot 3	0.00	5.00
\$B\$7	Refinery 3 Depot 1	0.00	27.00
\$C\$7	Refinery 3 Depot 2	0.00	0.00
\$D\$7	Refinery 3 Depot 3	0.00	0.00
\$B\$8	Refinery 4 Depot 1	0.00	0.00
\$C\$8	Refinery 4 Depot 2	0.00	0.00
\$D\$8	Refinery 4 Depot 3	0.00	10.00

Optimal Solution:

$\square \mathrm{X} 12=22$
$\square \mathrm{X} 21=3$
$\square \mathrm{X} 22=23$
$\square \mathrm{X} 23=5$
$\square \mathrm{X} 31=27$
$\square \mathrm{X43}=10$
$\square \mathrm{Z}=3,780$
\square Why not use route $1 \rightarrow 3$?
\square Would total cost change if refinery 4 had 1 more tanker load available?

From the SOLVER output

Adjustable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
$\$ \mathrm{~B} \$ 5$	Refinery 1 Depot 1	0.00	60.00	90	$1 \mathrm{E}+30$	60
$\$ \mathrm{C} \$ 5$	Refinery 1 Depot 2	22.00	0.00	30	30	$1 \mathrm{E}+30$
$\$ \mathrm{D} \$ 5$	Refinery 1 Depot 3	0.00	60.00	120	$1 \mathrm{E}+30$	60
$\$ \mathrm{~B} \$ 6$	Refinery 2 Depot 1	3.00	0.00	60	60	0
$\$ \mathrm{C} \$ 6$	Refinery 2 Depot 2	23.00	0.00	60	150	30
$\$ \mathrm{D} \$ 6$	Refinery 2 Depot 3	5.00	0.00	90	0	60
$\$ \mathrm{~B} \$ 7$	Refinery 3 Depot 1	27.00	0.00	30	0	$1 \mathrm{E}+30$
$\$ \mathrm{C} \$ 7$	Refinery 3 Depot 2	0.00	150.00	180	$1 \mathrm{E}+30$	150
$\$ \mathrm{D} \$ 7$	Refinery 3 Depot 3	0.00	0.00	60	$1 \mathrm{E}+30$	0
$\$ \mathrm{~B} \$ 8$	Refinery 4 Depot 1	0.00	120.00	120	$1 \mathrm{E}+30$	120
$\$ \mathrm{C} \$ 8$	Refinery 4 Depot 2	0.00	150.00	150	$1 \mathrm{E}+30$	150
\$D\$8	Refinery 4 Depot 3	10.00	0.00	30	60	$1 \mathrm{E}+30$

Cell Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$F\$12 Availability of refinery 1 Used	22.00	-30.00	22	23	10
\$F\$13 Availability of refinery 2 Used	31.00	0.00	41	1E+30	10
\$F\$14 Availability of refinery 3 Used	27.00	-30.00	27	3	10
\$F\$15 Availability of refinery 4 Used	10.00	-60.00	10	5	10
\$F\$16 Requirements of depot 1 Used	30.00	60.00	30	10	3
\$F\$17 Requirements of depot 2 Used	45.00	60.00	45	10	23
\$F\$18 Requirements of depot 3 Used	15.00	90.00	15	10	5

From dual

prices/reduced costs \square Cost of route $1 \rightarrow 3$ has to be reduced by 60!
-If R4's availability increases by 1 , then the total cost goes down by 60! \square VERIFY IT!

Integer Programming Problems

\square Allocation of workers per shift
\square Production of cars per week
\square Number of bank branches operating in an area

All problems of allocation of resources, when some or all of these resources or activities can be allocated or undertaken at integer values.
\square Usually, these problems can be approximated using Linear Programming, and rounding-off to the nearest integer
\square ONE exception ...

Binary Problems

\square A special category of Integer Problems
\square The variables take only the values 0 or 1 (binary variable)
\square These are logical variables ... not physical variables
\square They represent logical decisions (YES/NO), not physical quantities
\square They cannot be solved sing LP - no rounding off can occur!
\square They need special "art" in the formulation
\square They appear very frequently in many problems:
\square Investment evaluation and selection

- Distribution and vehicle routing
\square Production scheduling

Example: The Knapsack Problem

\square Assume you are going for a 3-day safari.
\square Your knapsack can take items of total weight no more than 20 Kilos and total volume no more than 30 gallons
\square You are asked to choose among 10 items (foods), each one being characterised by a weight w_{i}, a volume v_{i}, and a value c_{i},
\square Your objective is to choose the best combination among the 10 items available, i.e. the ones that maximize the total value of your knapsack.

Knapsack problem: Solution

Let $X_{i}=\left\{\begin{array}{l}1, \text { if item } i(i=1 \ldots 10) \text { is to be included in the knapsack } \\ 0, \text { otherwise }\end{array}\right.$

Problem Formulation:

$$
\begin{array}{ll}
\operatorname{Max} & Z=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{10} X_{10} \\
\text { s.t. } \\
w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{10} X_{10} \leq 20 \\
v_{1} X_{1}+v_{2} X_{2}+\ldots+v_{10} X_{10} \leq 30 \\
& X_{1}, \ldots, X_{10}=0 / 1
\end{array}
$$

Variations around Knapsack problem

1. Assume that items 1 and 2 are "competitive", i.e. there is no sense in bringing both of them, since you will be consuming only one, (e.g. two types of toothpaste).

$$
x_{1}+x_{2} \leq 1
$$

Assume that items 3 and 4 are "complementary", i.e. if you take one with you, you also have to take the other as well, and vice versa (e.g. pasta and tomato sauce).

$$
x_{3}=x_{4}
$$

3. Assume that foods 5 and 6 are "partially complementary", i.e. if you take the first (e.g. coffee), you also have to take the second (e.g. milk). This in not true the other way.

$$
X_{5} \leq X_{6}
$$

Note: The above is an investment selection problem

Case 1: Investment Selection

You are considering how to best allocate the $\$ 4 \mathrm{M}$ available to the following investments that receive some subsidy:

	INVESTMENT	COST (million \$)	RETURN (million \$)
1	Casino in Rhodes	2.50	4.20
2	Casino in Corfu	1.50	3.80
3	Private Airport in Corfu	0.70	0.75
4	Casino in North Evia	1.30	2.20
5	Factory in North Evia	1,40	1.90
6	Housing in North Evia	0.60	0.30

Cost = Own funds (over and above the subsidy)

Case 1: Investment Selection

\square By law, the government can only acquire a licence for 1 casino.
\square If the casino in Corfu is selected, then a small private airport needs to also be built (because no good transportation currently exists).
\square The airport in Corfu is certainly beneficial anyway.
\square A casino can not be operated in an industrial area.
\square If the factory in Evia is constructed, the housing need for the workers must also be taken care of.
\square But if the factory in Evia is not constructed, the houses do not need to be constructed either.
\square Total budget (own funds) restricted to $\$ 4$ million.

Case 1: The Model

Let $x_{i}=1$ if you undertake investment i

$$
=0 \text { otherwise }
$$

$\operatorname{Max} Z=4.20 \mathrm{x}_{1}+3.80 \mathrm{x}_{2}+0.75 \mathrm{x}_{3}+2.20 \mathrm{x}_{4}+1.90 \mathrm{x}_{5}+0.30 \mathrm{x}_{6}$
s.t.
$2.50 x_{1}+1.50 x_{2}+0.70 x_{3}+1.30 x_{4}+1.40 x_{5}+0.60 x_{6} \leq 4$

$$
\begin{aligned}
x_{1}+x_{2}+x_{4} & \leq 1 \\
x_{2} & \leq x_{3} \\
x_{4}+x_{5} & \leq 1 \\
x_{5} & =x_{6} \\
x_{i} & =0 / 1
\end{aligned}
$$

Case 2: Distribution

\square Four trucks are available to deliver milk to five grocery stores.
\square The demand of each grocery store can be supplied by only truck, but a truck may deliver to more than one grocery.

Truck	Capacity (gallons)	Daily Operating Cost $(\$)$
1	400	45
2	500	50
3	600	55
4	1100	60

Grocery	Daily Demand (gallons)
1	100
2	200
3	300
4	500
5	800

\square Determine how to minimize the daily cost of meeting the demands of the five groceries.

Case 2: Distribution

Let $Y_{i}=\left\{\begin{array}{l}1, \text { if truck } i(i=1 \ldots 4) \text { operates on a particular day to deliver milk } \\ 0, \text { otherwise }\end{array}\right.$
Let $X_{i j}=\left\{\begin{array}{l}1, \text { if truck } i(i=1 . .4) \text { is used to deliver milk to grocery store } i(i=1, \ldots, 5) \\ 0, \text { otherwise }\end{array}\right.$

$$
\min Z=45 \cdot Y_{1}+50 \cdot Y_{2}+55 \cdot Y_{3}+60 \cdot Y_{4}
$$

so that
$100 \cdot X_{11}+200 \cdot X_{12}+300 \cdot X_{13}+500 \cdot X_{14}+800 \cdot X_{15} \leq 400 \cdot Y_{1}$
Truck 2 Capacity: $\quad 100 \cdot X_{21}+200 \cdot X_{22}+300 \cdot X_{23}+500 \cdot X_{24}+800 \cdot X_{25} \leq 500 \cdot Y_{2}$
Truck 3 Capacity: $\quad 100 \cdot X_{31}+200 \cdot X_{32}+300 \cdot X_{33}+500 \cdot X_{34}+800 \cdot X_{35} \leq 600 \cdot Y_{3}$
Truck 4 Capacity: $100 \cdot X_{41}+200 \cdot X_{42}+300 \cdot X_{43}+500 \cdot X_{44}+800 \cdot X_{45} \leq 1100 \cdot Y_{4}$

$$
\begin{gathered}
X_{1 j}+X_{2 j}+X_{3 j}+X_{4 j}=1 \quad \text { for every grocery store } j(j=1, \ldots, 5) \\
X_{i j}, Y_{i}=0 / 1
\end{gathered}
$$

Example: Project Portfolio Selection

\square Available Budget \$100,000
\square Project Specifications:

Project (i)	Budget (Ki) $\mathbf{1 0 0 0 \times \$}$	NPV (Ai) 1000x\$
1	30	45
2	20	32
3	29	38
4	22	35
5	27	40
6	18	29

Project Portfolio Example

\square Constraints and Limitations
\square We cannot exceed total budget
\square Projects 1 and 5 can only be selected as a pair, we cannot select separately project 1 or project 5.
\square We can select either project 3 or project 4, but we cannot select both of them
\square We cannot select more than 3 projects
\square We can select project 6, only if we have also selected project 3

Project Portfolio Example

\square Objective
\square Select the projects that maximize the total NPV according to the constraints and limitations

Project Portfolio Example

Solution

\square Binary Decision Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$ and X_{6}

- These are variable can only take values 0 or 1 . For example, if project 1 is selected then $X_{1}=1$; otherwise $X_{1}=0$.
\square Model
$\square \operatorname{Max} Z=\left(45 X_{1}+32 X_{2}+38 X_{3}+35 X_{4}+40 X_{5}+29 X_{6}\right)$
- $30 X_{1}+20 X_{2}+29 X_{3}+22 X_{4}+27 X_{5}+18 X_{6}<=100$
$\square \mathrm{X}_{1}=\mathrm{X}_{5}$
- $X_{3}+X_{4}<=1$
- $\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{X}_{5}+\mathrm{X}_{6}<=3$
- $X_{6}<=X_{3}$
- $X_{i}=0$ or 1, for all $i=1, \ldots 6$

Project Portfolio Example

Solution (using Excel Solver)

Project (i)	Budget (Ki) $\mathbf{1 0 0 0 \times \$}$	NPV $(\mathbf{A i})$ $\mathbf{1 0 0 0 \times \$}$	Binary Selection Variable Xi	Total Budget	Total NPV
1	30	45	$\mathbf{1}$	30	45
2	20	32	$\mathbf{0}$	0	0
3	29	38	$\mathbf{1}$	29	38
4	22	35	$\mathbf{0}$	0	0
5	27	40	$\mathbf{1}$	27	40
6	18	29	$\mathbf{0}$	0	0

Transportation Example

\square A transportation model is formulated for a class of problems with the following characteristics:
\square a product is transported from a number of sources to a number of destinations at the minimum possible cost

- each source is able to supply a fixed number of units of product
- each destination has a fixed demand for product

Transportation Example

\square Demand and Supply needs

Distribution Center	Supply
1. Kansas City	150
2. Omaha	175
3. Des Moines	$\underline{275}$

Plant	Demand
A. Chicago	200
B. St. Louis	100
C. Cincinnati	$\underline{300}$

Transportation Example

\square Transportation
Costs among plants and distribution centers

X Microsoft Excel - Book1							
匋 Eile Edit wiew Insert Format Iools Data Window Help							
	A	B	C	D	E	F	G
1							
2 Potatoes Shipping Example							
3		Receiving Plants				Distributed Supply	
4	Distribution Centers	Chicago	St. Louis Cincinnati Supply				
5	Kansas City				150	0	
6	Omaha				175	0	
7	Des Moines				275	0	
8	Demand	200	100	300	600		
9	Met Demand	0	0	0			
10	Total Cost	0					
11							

Whicrosoft Excel - Book1						
娄 Eile Edit yew Insert Format Iools Data Window Help Typeaquestic						
	A	-	c	D	E	F
2	Potatoes Shipping Example					
3	Receiving Plants					
4	Distribution	Chicago	St. Louis	Cincinnati	Supply	Distributed Sup
5	Kansas City				150	=SUM(B5:D5)
6	Omaha				175	=SUM(B6:D6)
7	Des Moines				275	=SUM (B7:D7)
8	Demand	200	100	300	=SUM(E5:E7)	
9	Met Demanc	=SUM (B5:B7)	$=$ SUM (C5:C7)	=SUM(D5:D7)		
10	Total Cost	$=\mathrm{B5}^{*} 6+\mathrm{B6}{ }^{*} 7+$				
11						

Transportation Example

\square Solution

- Microsoft Excel - Book1							
图 Eile Edit Wiew Insert Format Iools Data Window Help							
A2 $\quad f_{x}$ Potatoes Shipping Example							
	A	B	C	D	E	F	G
1							
2		otatoes Sh	hipping Ex	xample			
3			Receivin	ing Plants		Distribu	
4	Distribution Ce,	Chicago	St. Louis	Cincinnati	Supply	Supply	
5	Kansas City	0	0	150	150	150	
6	Omaha	25	0	150	175	175	
7	Des Moines	175	100	0	275	275	
8	Demand	200	100	300	600		
9	Met Demand	200	100	300			
10	Total Cost	4525					
11							

A simple Supply Chain

- 5 production plants (A, B, C, D, E) and 6 retail shops (1, 2, ..., 6)
- Each plant has a predefined capacity, a fixed production costs and a variable production cost per unit of product produced
- Each store has a minimum supply requirement (customer demand + safety stock) and a sale price
- For the transportation of product from each plant at each retail store there is a predefined transportation cost
- Problem:
- Find the optimum production and distribution quantities at each node
- Maximize the profit

Simple Supply Chain

\square Input Data:

	Variable Cost	Fixed Cost	Capacity	1	2	3	4	5	6
A	52	75,000	18	17	4	7	17	12	28
B	63	35,000	24	15	20	10	1	5	12
C	57	50,000	27	20	24	15	5	10	8
D	49	41,000	22	4	14	6	11	7	24
E	67	22,000	31	9	17	8	6	3	18
Demand				10	8	12	6	7	11
Price				107	125	98	115	105	130

Simple Supply Chain

\square Variables:
$\square Y_{A}=1$, if plant A operates, 0 otherwise
$\square Y_{B \prime} \ldots, Y_{E} 0 / 1$ binary variables the other plants
$\square \mathrm{A}_{1}=$ quantity that is produced in A and it is transported to retail shop 1
\square Respectively: $A_{2}, \ldots, A_{6}, B_{1}, \ldots, E_{6} \geq 0$ continuous variables that correspond to the quantities that produced and transported to the retail shops

Simple Supply Chain

107-17-52
$\operatorname{Max} Z=38 \mathrm{~A}_{1}+69 \mathrm{~A}_{2}+39 \mathrm{~A}_{3}+46 \mathrm{~A}_{4}+41 \mathrm{~A}_{5}+\ldots+45 \mathrm{E}_{6}-$ $-\left(75.000 Y_{A}+35.000 Y_{B}+\ldots+22.000 Y_{E}\right)$
s.t.

$$
\begin{array}{lcc}
A_{1}+A_{2}+\ldots+A_{6} & \leq & 18 Y_{A} \\
B_{1}+B_{2}+\ldots+B_{6} & \leq & 24 Y_{B} \\
& & \\
E_{1}+E_{2}+\ldots+E_{6} & \leq & 31 Y_{E} \\
\hline A_{1}+B_{1}+\ldots+E_{1} & \geq & 10 \\
A_{2}+B_{2}+\ldots+E_{2} & \geq & 8 \\
& & \\
\\
A_{6}+B_{6}+\ldots+E_{6} & \geq & 11 \\
\hline A_{1}, \ldots, E_{6} & & \geq \\
Y_{A}, Y_{B}, \ldots, Y_{E} & & = \\
0
\end{array}
$$

Simple Supply Chain

Decision Variables

	Retail Stores (Flow Variables)							Plants
Plants	1	2	3	4	5	6	Binary variables	
A	0	0	0	0	0	0	0	
B	0	0	6	6	0	12	B	1
C	0	0	0	0	0	0	C	0
D	0	0	0	0	0	0	D	0
E	10	8	6	0	7	0	E	1

	Objective Function Coefficients							Capacity Constraints		
	1001	1194	921	1081	986	1220				
	992	1167	907	1086	982	1225		0	<=	0
	993	1169	908	1088	983	1235		24	<=	24
	1017	1187	925	1090	994	1227		0	<=	0
	994	1166	905	1077	980	1215		0	<=	0
								31	<=	31
	0	0	0	0	0	0			Con	
	0	0	5442	6516	0	14700		10	$>=$	10
	0	0	0	0	0	0		8	$>=$	8
	0	0	0	0	0	0		12	$>=$	12
	9940	9328	5430	0	6860	0		6	$>=$	6
Totals	9940	9328	10872	6516	6860	14700	1216	7	$>=$	7
							Target Cell	12	>=	11

Using Excel Solver

Useful tips

Using Excel Solver

- Two steps:
\square Model development - decide what the decision variables are, what the objective is, which constraints are required and how everything fits together
\square Optimize - systematically choose the values of the decision variables that make the objective as large or small as possible and cause all of the constraints to be satisfied.

Using Excel Solver

\square Excel terminology for optimization
\square Decision variables $=$ changing cells
\square Objective = target cell
\square Constraints impose restrictions on the values in the changing cells.

- A common form for a constraint is nonnegativity
\square Nonnegativity constraints imply that changing cells must contain nonnegative values.

Using Excel Solver

- Real-life problems are almost never exactly linear. However, a linear approximation often yields very useful results.
- In terms of Solver, if the model is linear the Assume Linear Model box must be checked in the Solver Options dialog box.
\square Check the Assume Linear Model box even if the divisibility property is violated.

Using Excel Solver

- If the Solver returns a message that "the condition for Assume Linear Model are not satisfied" it
\square can indicate a logical error in your formulation.
\square can also indicate that Solver erroneously thinks the linearity conditions are not satisfied.
- Try not checking the Assume Linear model box and see if that works. In any case it always helps to have a well-scaled model.

Using Excel Solver

Infeasibility and Unboundedness

alt is possible that there are no feasible solutions to a model. There are generally two possible reasons for this:

1. There is a mistake in the model (an input entered incorrectly) or
2. the problem has been so constrained that there are no solutions left.
aln general, there is no foolproof way to find the problem when a "no feasible solution" message appears.

Using Excel Solver

A second type of problem is unboundedness.
\square Unboundedness is that the model can be made as large as possible. If this occurs it is likely that a wrong input has been entered or forgotten some constraints.
\square Infeasibility and unboundedness are quite different. It is possible for a model to have no feasible solution but no realistic model can have an unbounded solution.

