13.

Distribution Logistics - Vehicle Routing

BIA 674 - Supply Chain Analytics

What is the Vehicle Routing

 Problem?
Given a set of customers,

 anda fleet of vehicles to make deliveries, find
a set of routes that services all customers at minimum cost

What is the Vehicle Routing

Problem?

What is the Vehicle Routing Problem?

Basic VRP structure

\square Find the best vehicle route(s) to serve a set of geographically scattered orders from customers.
\square Best route may be

- minimum cost,
- minimum distance, or
- minimum travel time.
\square Orders may be
- Delivery from depot to customer
- Pickup at customer and return to depot
- Pickup at one place and deliver to another place

Basic VRP structure

\square Nodes: physical locations

- Depot.
- Customers
\square Arcs or Links
- Transportation links
- Number on each arc represents cost, distance,
 or travel time.

Basic VRP structure

\square For each customer, we know
\square Quantity required
\square The cost to travel to every other customer
\square For the vehicle fleet, we know
\square The number of vehicles
\square The capacity (weight and/or volume)
\square We must determine which customers each vehicle serves, and in what order, to minimise cost

Basic VRP structure

Objective function
\square In academic studies, usually a combination:
\square First, minimise number of routes
\square Then minimise total distance or total time
\square In real world
\square A combination of time and distance
\square Must include vehicle- and staff-dependent costs
\square Usually vehicle numbers are fixed

MIP formulation

Data:

$$
\operatorname{minimise}: \sum_{i, j} \mathrm{c}_{\mathrm{ij}} \sum_{k} x_{i j k}
$$

$c_{i j}$: Cost of travel from i to j subject to

q_{i} : Demand at i

Decision variables:
$x_{i j k}$: Travel direct from i to j on vehicle k

$$
\begin{aligned}
\sum_{\mathrm{i}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ijk}} & =1 \quad \forall j \\
\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ijk}} & =1 \quad \forall i \\
\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{i} \mathrm{ikk}}-\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{h} \mathrm{j} \mathrm{k}} & =0 \quad \forall k, h \\
\sum_{i} \mathrm{q}_{\mathrm{i}} \sum_{\mathrm{j}} \mathrm{x}_{\mathrm{ijk}} & \leq Q_{k} \quad \forall k \\
\left\{\mathrm{x}_{\mathrm{ijk}}\right\} & \subseteq S \\
x_{i j \mathrm{k}} & \in\{0,1\}
\end{aligned}
$$

History: Travelling Salesman Problem - TSP

A travelling salesman has to visit a number of cities. He knows the cost of travel between each pair. What order does he visit the cities to minimise cost?

- A sub-problem in many others
- Used in chip fabrication and many other real-world problems
- TSP = VRP with 1 vehicle of infinite capacity
- In vehicle routing - having decided which vehicle will visit which customers, each vehicle route is a travelling salesman problem

Travelling Salesman Problem

- Exact solution are found regularly for problems with 200-300 cities, and occasionally for problems with 1000 nodes.
- Some larger problems solved
(24,798 cities, towns and villages in Sweden)
- But - no constraints on the solution
- Even one constraint, and the whole method is unusable

TSP Solutions

\square Heuristics

- Construction: build a feasible route.
- I mprovement: improve a feasible route.
- Not necessarily optimal, but fast.
- Performance depends on problem.
- Worst case performance may be very poor.
- Exact algorithms
- Integer programming.
- Branch and bound.
- Optimal, but usually slow.
- Difficult to include complications

TSP \& VRP

\square TSP: Travelling Salesman Problem

- One route can serve all orders.
\square VRP: Vehicle Routing Problem
- More than one route is required to serve all orders.

Simplest Model: TSP

\square Given a depot and a set of n customers, find a route (or "tour") starting and ending at the depot, that visits each customer once and is of minimum length.
\square One vehicle.

- No capacities.
- Minimize distance.
- No time windows.
\square No compatibility constraints.
\square No DOT rules.

Symmetric and Asymmetric

Let c_{ij} be the cost (distance or time) to travel from i to j.

If $\mathrm{c}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{ij}}$ for all customers, then the problem is symmetric.

- Direction does not affect cost.

If $\mathrm{c}_{\mathrm{ij}} \neq \mathrm{c}_{\mathrm{ij}}$ for some pair of customers, then the problem is asymmetric.

- Direction does affect cost.

TSP Construction Heuristics

\square Nearest neighbor.
\square Add nearest customer to end of the route.
\square Nearest insertion.
\square Go to nearest customer and return.

- Insert customer closest to the route in the best sequence.
\square Savings method.
- Add customer that saves the most to the route

Nearest Neighbor

\square Add nearest customer to end of the route.

Nearest Neighbor

Add nearest customer to end of the route.

Nearest Insertion

\square Insert customer closest to the route in the best sequence.

Nearest Insertion

\square Insert customer closest to the route in the best sequence.

Savings Method

1. Select any city as the "depot" and call it city " 0 ".

- Start with separate one stop routes from depot to each customer.

2. Calculate all savings for joining two customers and eliminating a trip back to the depot.
$S_{i j}=C_{i 0}+C_{0 j}-C_{i j}$
3. Order savings from largest to smallest.
4. Form route by linking customers according to savings.

- Do not break any links formed earlier.
- Stop when all customers are on the route.

Savings Method Example

Given 5 customers and the costs (distances) between them.

Savings Method Example

Given 5 customers, select the lower left as the depot.

Conceptually form routes from the depot to each customer.

Savings Method: S_{12}

Savings Method

$\mathbf{S}_{12}=\mathbf{C}_{10}+\mathrm{C}_{02}-\mathbf{C}_{12}$
Note: $\mathbf{S}_{21}=\mathrm{C}_{20}+\mathrm{C}_{01}-\mathbf{C}_{21}$
so $\mathbf{S}_{\mathbf{1 2}}=\mathbf{S}_{\mathbf{2 1}}$

If problem is symmetric, then $\mathrm{s}_{\mathrm{ij}}=\mathrm{s}_{\mathrm{ji}}, \mathrm{so} \mathrm{s}_{21}=\mathrm{s}_{12}, \mathrm{~s}_{32}=\mathrm{s}_{23}$, etc. There are $(n-1)(n-2) / 2$ savings to calculate.

If problem is asymmetric, then all s_{ij} 's must be calculated.
There are $(n-1)(n-2)$ savings to calculate.

Savings Method: S_{13}

$$
\begin{aligned}
& \mathrm{S}_{13}=\mathrm{C}_{10}+\mathrm{C}_{03}-\mathrm{C}_{13} \\
& =\mathbf{8}+\mathbf{1 3 - 1 1 = 1 0}
\end{aligned}
$$

		0	j			
	$\mathrm{c}_{\text {ij }}$		1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	

Savings Method: S_{14}

$$
\begin{aligned}
& S_{14}=C_{10}+C_{04}-C_{14} \\
&=8+10-13=5
\end{aligned}
$$

		0	j				
		1	2	3	4		
	0		-	8	9	13	10
	1	8	-	4	11	13	
i	2	9	4	-	5	8	
	3	13	11	5	-	7	
	4	10	13	8	7	-	

Savings Method: S_{23}

$$
\begin{aligned}
& S_{23}=C_{20}+C_{03}-C_{23} \\
&=9+13-5=17
\end{aligned}
$$

C_{i}		ij 0	j				
		1	2	3	4		
	0		-	8	9	13	10
	1	8	-	4	11	13	
i	2	9	4	-	5	8	
	3	13	11	5	-	7	
	4	10	13	8	7	-	

Savings Method: S_{24}

$$
\begin{aligned}
& \mathbf{S}_{24}=C_{20}+C_{04}-C_{24} \\
&=\mathbf{9}+10-8=11
\end{aligned}
$$

		0	1	2	3	4
		-	8	9	13	10
1		8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	

Savings Method: S_{34}

$$
\begin{aligned}
& S_{14}=C_{30}+C_{04}-C_{34} \\
& =13+10-7=16
\end{aligned}
$$

		0	j			
	C_{ij}		1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	

Savings Method

\square Order savings from largest to smallest.

$$
\begin{aligned}
& \mathrm{S}_{23}\left(=\mathrm{S}_{23}\right)=17 \\
& \mathrm{~S}_{34}\left(=\mathrm{S}_{43}\right)=16 \\
& \mathrm{~S}_{12}\left(=\mathrm{S}_{21}\right)=13 \\
& \mathrm{~S}_{24}\left(=\mathrm{S}_{42}\right)=11 \\
& \mathrm{~S}_{13}\left(=\mathrm{S}_{31}\right)=10 \\
& \mathrm{~S}_{14}\left(=\mathrm{S}_{41}\right)=5
\end{aligned}
$$

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

```
S23 0-2-3-0
S34 0-2-3-4-0
S
S}2
S
S
\(\mathrm{S}_{12}-0-1-2-3-4-0\)
\(\mathrm{S}_{24}\)
\(\mathrm{S}_{13}\)
\(\mathrm{S}_{14}\)
```

Done!

Route Improvement Heuristics

- Start with a feasible route.
\square Make changes to improve route.
\square Exchange heuristics.
- Switch position of one customer in the route.
- Switch 2 arcs in a route.
- Switch 3 arcs in a route.
- Local search methods.
- Simulated Annealing.
- Tabu Search.
- Genetic Algorithms.

K-opt Exchange

Replace k arcs in a given TSP tour by k new arcs, so the result is still a TSP tour.

- 2-opt: Replace 4-5 and 3-6 by 4-3 and 5-6.

Original TSP tour

Improved TSP tour

3-opt Exchange

3-opt: Replace 2-3, 5-4 and 4-6 by 2-4, 4-3 and 5-6.

Original TSP tour

Improved TSP tour

From TSP to VRP

\square TSP $=$ VRP with 1 vehicle of infinite capacity
\square The VRP extends the TSP for multiple vehicles.

Capacitated VRP

\square Given a depot and a set of customers, find a set of minimum cost depot returning vehicle routes to service all customers (each customer must be served only once by exactly one vehicle).

- Multiple capacitated vehicles
- Minimize traveling distance

Solving VRPs

\square VRP is a very hard problem to solve

- NP Hard in the strong sense
- Exact solutions only for small problems (20-50 customers)
- Most solution methods are heuristic
- Most operate as:
- Construct
- Improve

Math Programming Approaches

$\operatorname{minimise}: \sum_{i, j} \mathrm{c}_{\mathrm{ij}} \sum_{k} x_{i j k}$
subject to

$$
\begin{aligned}
& \sum_{\mathrm{i}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ijk}}=1 \quad \forall \mathrm{j} \\
& \sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ijk}}=1 \quad \forall \mathrm{i} \\
& \sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ihk}}-\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{hik}}=0 \quad \forall k, h \\
& \sum_{i} \mathrm{q}_{\mathrm{i}} \sum_{\mathrm{j}} \mathrm{x}_{\mathrm{ijk}} \leq Q_{k} \quad \forall \mathrm{k} \\
& \left\{\mathrm{x}_{\mathrm{ijk}}\right\} \subseteq S \\
& x_{i j k} \in\{0,1\} \\
& \text { solution } \\
& \square \text { Disadvantages } \\
& \text { Only works for small } \\
& \text { problems } \\
& \text { One extra constraint } \\
& \rightarrow \text { back to the } \\
& \text { drawing board }
\end{aligned}
$$

Heuristic Column Generation

Columns

represent routes

Rows represent customers

Array entry $a_{i k}=1$ iff customer i is covered by route k

Heuristic methods - Construction

\square Savings method (Clarke \& Wright 1964)

- Calculate $S_{i j}$ for all i, j
- Consider cheapest $S_{i j}$
- If j can be appended to i
- merge them to new i
- update all $S_{i j}$
- else
- delete S_{ii}
- Repeat

Improvement Methods

Edge-exchange Intra- and Inter-route
Neighbourhood Structures
For example, 2-opt (3-opt, 4-opt...):
-Remove 2 arcs
-Replace with 2 others

Improvement Methods

1-1 Exchange

(swap)
Inter-route

Intra-route

Improvement Methods

2-OPT

Intra-route

Inter-Route

Improvement Methods

0-1 Relocate

Inter-route

Intra-route

Improvement Methods

I-OPT

Improvement Methods

CROSS

Improvement Methods

OR-OPT

Improvement Methods

GENI

Improvement Methods

CROSSOVEREXCHANGE

Improvement methods

Large Neighbourhood Search

$=$ Destroy \& Re-create

- Destroy part of the solution
- Remove visits from the solution
- Re-create solution
- Use insert method to re-insert customers
- Different insert methods lead to new (better?) solutions
- If the solution is better, keep it
- Repeat

Improvement methods

Variable Neighborhood Search

- Consider multiple neighborhoods
- Find local minimum in smallest neighborhood
- Advance to next-largest neighborhood
- Search current neighborhood
- If a change is found, return to smallest neighborhood
- Otherwise, advance to next-largest

Improvement methods

Path Relinking

-Applies where-ever a population of solutions is available
-Take one (good) solution A
-Take another (good) reference solution B
.Gradually transform solution A into solution B

- pass through new solutions "between" A and B
- new solutions contain traits of both A and B
- should be good!

Improvement methods

Genetic Programming

- Simulate the Natural Selection

Evolutionary Algorithms

- Generate a population of solutions (construct methods)

Evaluate fitness (objective)
Create next generation:

- Choose two solutions from population
- Recombination - Combine them
- (Mutate)
- Produce offspring (calculate fitness)
- (Improve)
- Repeat until population doubles
- Apply selection:
- Bottom half "dies"
- Repeat

Scaling

\square Solving problems with tens of thousands of nodes

- Decompose problem
- Split into smaller problems
- Limit search
- Only consider inserting next to nearby nodes
- Only consdier inserting into nearby routes

Solution Methods

\square.. and the whole bag of tricks
Other Metaheuristic Algorithms:

- Tabu Search
- Simulated Annealing
- Ants
- Bees

Hybrid Exact \& Metaheuristic Algorithms

Rich VRP Variants

Capacitated VRP

\square Homogeneous vehicles.
\square One capacity (weight or volume).
\square Minimize distance.

- No time windows or one time window per customer.
\square No compatibility constraints.
\square No DOT rules.
\square Multiple vehicle types
- Different fixed and variable traveling costs
\square Multiple vehicle capacities
- Weight, Cubic feet, Floor space, Value.
\square Many different types of Costs:
\square Fixed charge
\square Variable costs per loaded mile \& per empty mile
\square Waiting time; Layover time
- Cost per stop (handling)
\square Loading and unloading cost
\square Priorities for customers or orders
\square Time windows for pickup and delivery.
- Hard vs. soft
\square Compatibility
\square Vehicles and customers.
\square Vehicles and orders.
- Order types.
- Drivers and vehicles.
\square Driver rules (DOT)
- Max drive duration $=10 \mathrm{hrs}$. before 8 hr . break.
- Max work duration = 15 hrs. before 8 hr break.
- Max trip duration $=144$ hrs.

Time window constraints

\square VRP with Time Window constraints

- A window during which service can start (if the vehicle arrives earlier it waits at customer location)
- E.g. only accept delivery 7:30am to 11:00am
- Additional input data required
- Duration of each customer visit
- Time between each pair of customers
- (Travel time can be vehicle-dependent or time-dependent)
- Makes the route harder to visualise

Time Window constraints

Pickup and Delivery problems

- Most routing considers delivery to/from a depot (depots)

Pickup and Delivery problems consider FedEx style problem: pickup at location A, deliver to location B

Load profiles

Pickup and Delivery problems

- PDPs have two implied constraints:
- pickup is before delivery
- pickup and delivery are on the same vehicle
- Usually, completely different methods used to solve this sort of problem
- Can be quite difficult
- Standard VRP is in effect a PDP with all stuff picked up at (delivered to) a depot. Not usually solved that way

Pickup and Delivery problem

\square Interesting variants

- Dial-a-ride problem:
- Passenger transport
- Like a multi-hire taxi
- Pickup passenger A, pickup passenger B, drop off B, pickup up C, drop off A, \ldots
- Ride-time constraints (e.g. max $1.4 \times$ direct travel time)
- PDP can be used to model cross-docking
- Pick up at Factory, Deliver to DC;

Pickup at DC, Deliver to customer

- Constraint: "Deliver to DC" before "Pickup at DC"

Pure Pickup or Delivery

\square Delivery: Load vehicle at depot. Design route to deliver to many customers (destinations).
\square Pickup: Design route to pickup orders from many customers and deliver to depot.
\square Examples:

- UPS, FedEx, etc.
- Manufacturers \& carriers.
- Carpools, school buses, etc.

Mixed Pickup \& Delivery

- Can pickups and deliveries be made on same trip?
- Can they be interspersed?

Mixed Pickup \& Deliverv

Pickup-Delivery Problems

\square Pickup at one or more origin and delivery to one or more destinations.
\square Often long haul trips.

Δ
-

${ }_{B}$
${ }^{\circ} \mathrm{C}$

Intersperse Pickups and Deliveries?

Can pickups and deliveries be interspersed?

Backhauls

\square If vehicle does not end at depot, should it return empty (deadhead) or find a backhaul?

- How far out of the way should it look for a backhaul?

Backhauls

\square Compare profit from deadheading and carrying backhaul.

```
\triangle Pickup
- Delivery
```


Fleet size and mix

- Heterogonous vehicles
- Vehicles of different capacities, costs, speeds etc
- Fleet size and mix problem
- Decide the correct number of each type of vehicle
- Strategic decision
- Can be the most important part of optimization

Other variants

Profitable tour problem

. Not all visits need to be completed -Known profit for each visit
.Choose a subset that gives maximum return (profit from visits routing cost)

Other variants

Period Routing

- Routing with periodical deliveries
- Same routes every week / fortnight
- Deliver to different customers with different frequencies: patterns

M	T	W	T	F
	$?$		$?$	
$?$			$?$	
$?$		$?$		$?$
$?$	$?$	$?$	$?$	$?$

- 3-part problem
- Choose pattern for each cust
- Choose qty for each delivery
- Design route for each day

VRP meets the real world

\square Rich VRPs

- Attempt to model constraints common to many reallife enterprises
- Multiple Time windows
- Multiple Commodities
- Heterogeneous vehicles
- Compatibility constraints
- Goods for customer A can't travel with goods from customer B
- Goods for customer A can't travel on vehicle C

VRP meets the real world

\square Other real-world considerations

- Fatigue rules and driver breaks
- Vehicle re-use (multiple trips per day)
- Ability to change vehicle characteristics (composition)
- Add trailer, or move compartment divider

Use of limited resources

- e.g limited docks for loading, hence need to stagger dispatch times
- Variable loading / unloading times

VRP meets the real world

\square Yet more constraints
Only two types of product on each vehicle

- Consistent constraints
- Customers visited in 'patterns' (Period Routing)
- Same driver every day
- Around the same time
- Meet ferry
- Blood transport (dynamic time window)
- Promiscuous driver constraint

VRP meets the real world

\square New data sources

- Routing with time-of-day dependent travel times
- Uses historical data to forecast travel time at different times of day
- Routing with dynamic travel times
- Uses live traffic information feed to update expected travel time dynamically

VRP meets the real world

\square Stochastic Routing
\square What if things don't go according to plan?

- Sources of uncertainty
- Uncertainty in existence (do I even need to visit)
- Uncertainty in quantity (how much is actually required)
- Uncertainty in travel times (traffic)
- Uncertainty in duration (maintenance engineer)

Optimal solution can be brittle

- If something is not quite right, whole solution falls apart

VRP meets the real world

\square E.g. garbage collection

- Wet rubbish is heavy. On rainy days, trucks may have more load than usual (uncertainty in quantity)
- Need stops near dump in case they have to double back
- = Recourse.

