13. Distribution Logistics – Vehicle Routing

BIA 674 - Supply Chain Analytics

What is the Vehicle Routing Problem?

Given a set of customers, and a fleet of vehicles to make deliveries, find a set of routes that services all customers at minimum cost

What is the Vehicle Routing Problem?

What is the Vehicle Routing Problem?

- Find the best vehicle route(s) to serve a set of geographically scattered orders from customers.
- Best route may be
 - minimum cost,
 - minimum distance, or
 - minimum travel time.
- Orders may be
 - Delivery from depot to customer
 - Pickup at customer and return to depot
 - Pickup at one place and deliver to another place

Nodes: physical locations

- Depot.
- Customers
- Arcs or Links
 - Transportation links
- Number on each arc represents cost, distance, or travel time.

□ For each customer, we know

- Quantity required
- The cost to travel to every other customer
- □ For the vehicle fleet, we know
 - The number of vehicles
 - The capacity (weight and/or volume)
- We must determine which customers each vehicle serves, and in what order, to minimise cost

Objective function

- □ In academic studies, usually a combination:
 - First, minimise number of routes
 - Then minimise total distance or total time
- In real world
 - A combination of time and distance
 - Must include vehicle- and staff-dependent costs
 - Usually vehicle numbers are fixed

MIP formulation

minimise : $\sum_{i \in i} c_{ij} \sum_{k} x_{ijk}$ Data: subject to C_{ij} : Cost of travel from *i* to *j* $\sum_{i} \sum_{k} x_{ijk} = 1 \quad \forall j$ q_i : Demand at *i* $\sum_{i}\sum_{k} x_{ijk} = 1 \quad \forall i$ **Decision variables:** $\sum_{i} \sum_{k} x_{ihk} - \sum_{i} \sum_{k} x_{hjk} = 0 \quad \forall k, h$ x_{ijk} : Travel direct from *i* to *j* on vehicle k $\sum_{i} q_{i} \sum_{i} x_{ijk} \leq Q_{k}$ $\{\mathbf{x}_{iik}\} \subseteq S$

 $x_{ijk} \in \{0,1\}$

 $\forall k$

Travelling Salesman Problem

History: Travelling Salesman Problem - TSP

- A travelling salesman has to visit a number of cities.
 He knows the cost of travel between each pair.
 What order does he visit the cities to minimise cost?
 - A sub-problem in many others
 - Used in chip fabrication and many other real-world problems
 - TSP = VRP with 1 vehicle of infinite capacity
 - In vehicle routing having decided which vehicle will visit which customers, each vehicle route is a travelling salesman problem

Travelling Salesman Problem

- Exact solution are found regularly for problems with 200-300 cities, and occasionally for problems with 1000 nodes.
- Some larger problems solved

(24,798 cities, towns and villages in Sweden)

- But no constraints on the solution
- Even one constraint, and the whole method is unusable

TSP Solutions

Heuristics

- **Construction**: build a feasible route.
- **Improvement**: improve a feasible route.
 - Not necessarily optimal, but fast.
 - Performance depends on problem.
 - Worst case performance may be very poor.
- Exact algorithms
 - Integer programming.
 - Branch and bound.
 - Optimal, but usually slow.
 - Difficult to include complications

TSP & VRP

TSP: Travelling Salesman Problem

One route can serve all orders.

VRP: Vehicle Routing Problem

More than one route is required to serve all orders.

Simplest Model: TSP

- Given a depot and a set of n customers, find a route (or "tour") starting and ending at the depot, that visits each customer once and is of minimum length.
 - One vehicle.
 - No capacities.
 - Minimize distance.
 - No time windows.
 - No compatibility constraints.
 - No DOT rules.

Symmetric and Asymmetric

Let c_{ij} be the cost (distance or time) to travel from i to j.

If $c_{ij} = c_{ji}$ for all customers, then the problem is *symmetric*.

- Direction does not affect cost.
- If $c_{ij} \neq c_{ji}$ for some pair of customers, then the problem is *asymmetric*.
 - Direction does affect cost.

TSP Construction Heuristics

Nearest neighbor.

Add nearest customer to end of the route.

Nearest insertion.

- Go to nearest customer and return.
- Insert customer closest to the route in the best sequence.
- Savings method.
 - Add customer that saves the most to the route

Nearest Neighbor

Add nearest customer to end of the route.

Nearest Neighbor

Add nearest customer to end of the route.

Nearest Insertion

Insert customer closest to the route in the best sequence.

Nearest Insertion

Insert customer closest to the route in the best sequence.

- 1. Select any city as the "depot" and call it city "0".
 - Start with separate one stop routes from depot to each customer.
- 2. Calculate all *savings* for joining two customers and eliminating a trip back to the depot.

 $S_{ij} = C_{i0} + C_{0j} - C_{ij}$

- 3. Order savings from largest to smallest.
- 4. Form route by linking customers according to savings.
 - Do not break any links formed earlier.
 - Stop when all customers are on the route.

Savings Method Example

Given 5 customers and the costs (distances) between them.

Savings Method Example

Given 5 customers, select the lower left as the depot.

Conceptually form routes from the depot to each customer.

Savings Method: S₁₂

 $\mathbf{S}_{12} = \mathbf{C}_{10} + \mathbf{C}_{02} - \mathbf{C}_{12}$

Note: $S_{21} = C_{20} + C_{01} - C_{21}$

so $S_{12} = S_{21}$

If problem is symmetric, then $s_{ij} = s_{ji}$, so $s_{21} = s_{12}$, $s_{32} = s_{23}$, etc. There are (n-1)(n-2)/2savings to calculate.

If problem is asymmetric, then all s_{ij}'s must be calculated. There are (n-1)(n-2) savings to calculate.

Savings Method: S₁₃

 $S_{13} = C_{10} + C_{03} - C_{13}$ = 8 + 13 - 11 = 10

					j	
	C _{ij}	0	1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	-

Savings Method: S_{14}

 $S_{14} = C_{10} + C_{04} - C_{14}$ *= 8 + 10 - 13 = 5*

					j	
	C _{ij}	0	1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	-

Savings Method: S₂₃

 $S_{23} = C_{20} + C_{03} - C_{23}$ = 9 + 13 - 5 = 17

					j	
	C _{ij}	0	1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	_

Savings Method: S₂₄

$$S_{24} = \frac{C_{20} + C_{04} - C_{24}}{= 9 + 10 - 8 = 11}$$

					j	
	C _{ij}	0	1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	-

Savings Method: S₃₄

 $S_{14} = C_{30} + C_{04} - C_{34}$ = 13 + 10 - 7 = 16

					j	
	C _{ij}	0	1	2	3	4
	0	-	8	9	13	10
	1	8	-	4	11	13
i	2	9	4	-	5	8
	3	13	11	5	-	7
	4	10	13	8	7	_

Order savings from largest to smallest.

$$S_{23} (= S_{23}) = 17$$

 $S_{34} (= S_{43}) = 16$
 $S_{12} (= S_{21}) = 13$
 $S_{24} (= S_{42}) = 11$
 $S_{13} (= S_{31}) = 10$
 $S_{14} (= S_{41}) = 5$

Form route by linking customers according to savings.

Form route by linking customers according to savings.

S₂₃ 0-2-3-0 S₃₄ S₁₂ S₂₄ S₁₃ S₁₄

Form route by linking customers according to savings.

Form route by linking customers according to savings.

 S_{23} 0-2-3-0 S_{34} 0-2-3-4-0 S_{12} S_{24} S_{13} S_{14}

Savings Method

Form route by linking customers according to savings.

Savings Method

Form route by linking customers according to savings.

 S_{23} 0-2-3-0 S_{34} 0-2-3-4-0 S_{12} 0-1-2-3-4-0 S_{24} S_{13} S_{14}

Route Improvement Heuristics

Start with a feasible route.

Make changes to improve route.

- Exchange heuristics.
 - Switch position of one customer in the route.
 - Switch 2 arcs in a route.
 - Switch 3 arcs in a route.
- Local search methods.
 - Simulated Annealing.
 - Tabu Search.
 - Genetic Algorithms.

Replace k arcs in a given TSP tour by k new arcs, so the result is still a TSP tour.

□ 2-opt: Replace 4-5 and 3-6 by 4-3 and 5-6.

3-opt Exchange

3-opt: Replace 2-3, 5-4 and 4-6 by 2-4, 4-3 and 5-6.

From TSP to VRP

- \Box TSP = VRP with 1 vehicle of infinite capacity
- The VRP extends the TSP for multiple vehicles.

Capacitated VRP

- Given a depot and a set of customers, find a set of minimum cost depot returning vehicle routes to service all customers (each customer must be served only once by exactly one vehicle).
 - Multiple capacitated vehicles
 - Minimize traveling distance

Solving VRPs

□ VRP is a very hard problem to solve

- NP Hard in the strong sense
- Exact solutions only for small problems (20-50 customers)

- Most solution methods are heuristic
- Most operate as:
 - Construct
 - Improve

Math Programming Approaches

minimise :
$$\sum_{i,j} c_{ij} \sum_{k} x_{ijk}$$

subject to

$$\sum_{i} \sum_{k} x_{ijk} = 1 \quad \forall j$$

$$\sum_{j} \sum_{k} x_{ijk} = 1 \quad \forall i$$

$$\sum_{j} \sum_{k} x_{ihk} - \sum_{j} \sum_{k} x_{hjk} = 0 \quad \forall k, h$$

$$\sum_{i} q_{i} \sum_{j} x_{ijk} \leq Q_{k} \quad \forall k$$

$$\{x_{ijk}\} \subseteq S$$

$$x_{ijk} \in \{0,1\}$$

Advantages

- Can find the optimal solution
- Disadvantages
- Only works for small problems
- One extra constraint
 → back to the drawing board

Heuristic Column Generation

Heuristic methods - Construction

- Savings method (Clarke & Wright 1964)
- Calculate S_{ij} for all i, j
- Consider cheapest S_{ij}
- If j can be appended to i
 - merge them to new *i*
 - update all S_{ij}
- else
 - delete S_{ij}
- Repeat

Edge-exchange Intra- and Inter-route Neighbourhood Structures

- For example, 2-opt (3-opt, 4-opt...):
- Remove 2 arcs
- Replace with 2 others

I-OPT

CROSS

OR-OPT

GENI

Large Neighbourhood Search

- = Destroy & Re-create
- Destroy part of the solution
 - Remove visits from the solution
- Re-create solution
 - Use insert method to re-insert customers
 - Different insert methods lead to new (better?) solutions
- If the solution is better, keep it
- Repeat

Variable Neighborhood Search

- Consider multiple neighborhoods
- Find local minimum in smallest neighborhood
- Advance to next-largest neighborhood
- Search current neighborhood
 - If a change is found, return to smallest neighborhood
 - Otherwise, advance to next-largest

Path Relinking

 Applies where-ever a population of solutions is available

- Take one (good) solution A
- •Take another (good) reference solution B
- •Gradually transform solution A into solution B
 - pass through new solutions "between" A and B
 - new solutions contain traits of both A and B
 - should be good!

Genetic Programming

Simulate the Natural Selection

Evolutionary Algorithms

- Generate a population of solutions (construct methods)
- Evaluate fitness (objective)
- Create next generation:
 - Choose two solutions from population
 - Recombination Combine them
 - (Mutate)
 - Produce offspring (calculate fitness)
 - (Improve)
 - Repeat until population doubles
- Apply selection:
 - Bottom half "dies"
- Repeat

Solving problems with tens of thousands of nodes

- Decompose problem
 - Split into smaller problems
- Limit search
 - Only consider inserting next to nearby nodes
 - Only consdier inserting into nearby routes

Solution Methods

.. and the whole bag of tricks

Other Metaheuristic Algorithms:

- Tabu Search
- Simulated Annealing
- Ants
- Bees
- • •

Hybrid Exact & Metaheuristic Algorithms

Rich VRP Variants

Capacitated VRP

- Homogeneous vehicles.
- One capacity (weight or volume).
- Minimize distance.
- No time windows or one time window per customer.
- No compatibility constraints.
- No DOT rules.

Rich VRPs

Multiple vehicle types

Different fixed and variable traveling costs

Multiple vehicle capacities

Weight, Cubic feet, Floor space, Value.

Many different types of Costs:

- Fixed charge
- Variable costs per loaded mile & per empty mile
- Waiting time; Layover time
- Cost per stop (handling)
- Loading and unloading cost

Priorities for customers or orders

Rich VRPs

□ Time windows for pickup and delivery.

Hard vs. soft

Compatibility

- Vehicles and customers.
- Vehicles and orders.
- Order types.
- Drivers and vehicles.

Driver rules (DOT)

- Max drive duration = 10 hrs. before 8 hr. break.
- Max work duration = 15 hrs. before 8 hr break.
- Max trip duration = 144 hrs.

Time window constraints

VRP with Time Window constraints

- A window during which service can start (if the vehicle arrives earlier it waits at customer location)
- E.g. only accept delivery 7:30am to 11:00am
- Additional input data required
 - Duration of each customer visit
 - Time between each pair of customers
 - (Travel time can be vehicle-dependent or time-dependent)
- Makes the route harder to visualise

Time Window constraints

Pickup and Delivery problems

- Most routing considers delivery to/from a depot (depots)
- Pickup and Delivery problems consider FedEx style problem:

pickup at location A, deliver to location B

Pickup and Delivery problems

- PDPs have two implied constraints:
 - pickup is before delivery
 - pickup and delivery are on the same vehicle

- Usually, completely different methods used to solve this sort of problem
- Can be quite difficult
- Standard VRP is in effect a PDP with all stuff picked up at (delivered to) a depot. Not usually solved that way

Pickup and Delivery problem

- Interesting variants
- Dial-a-ride problem:
 - Passenger transport
 - Like a multi-hire taxi
 - Pickup passenger A, pickup passenger B, drop off B,
 pickup up C, drop off A,
 - Ride-time constraints (e.g. max 1.4 x direct travel time)
- PDP can be used to model cross-docking
 - Pick up at Factory, Deliver to DC;
 Pickup at DC, Deliver to customer
 - Constraint: "Deliver to DC" before "Pickup at DC"

Pure Pickup or Delivery

- Delivery: Load vehicle at depot. Design route to deliver to many customers (destinations).
- Pickup: Design route to pickup orders from many customers and deliver to depot.
- Examples:
 - UPS, FedEx, etc.
 - Manufacturers & carriers.
 - Carpools, school buses, etc.

Mixed Pickup & Delivery

- Can pickups and deliveries be made on same trip?
- Can they be interspersed?

Pickup-Delivery Problems

- Pickup at one or more origin and delivery to one or more destinations.
- Often long haul trips.

Intersperse Pickups and Deliveries?

Can pickups and deliveries be interspersed?

- If vehicle does not end at depot, should it return empty (deadhead) or find a backhaul?
 - How far out of the way should it look for a backhaul?

Backhauls

Compare profit from deadheading and carrying backhaul.

Fleet size and mix

- Heterogonous vehicles
 - Vehicles of different capacities, costs, speeds etc
- Fleet size and mix problem
 - Decide the correct number of each type of vehicle
 - Strategic decision
- Can be the most important part of optimization

Other variants

Profitable tour problem

- Not all visits need to be completed
- Known profit for each visit
- •Choose a subset that gives maximum return (profit from visits – routing cost)

Other variants

Period Routing

- Routing with periodical deliveries
- Same routes every week / fortnight
- Deliver to different customers with different frequencies: patterns
- 3-part problem
 - Choose pattern for each cust
 - Choose qty for each delivery
 - Design route for each day

Μ	Т	W	Т	F
	?		?	
?			?	
?		?		?
?	?	?	?	?

Rich VRPs

- Attempt to model constraints common to many reallife enterprises
 - Multiple Time windows
 - Multiple Commodities
 - Heterogeneous vehicles
 - Compatibility constraints
 - Goods for customer A can't travel with goods from customer B
 - Goods for customer A can't travel on vehicle C

Other real-world considerations

- Fatigue rules and driver breaks
- Vehicle re-use (multiple trips per day)
- Ability to change vehicle characteristics (composition)
 - Add trailer, or move compartment divider
- Use of limited resources
 - e.g limited docks for loading, hence need to stagger dispatch times
- Variable loading / unloading times

Yet more constraints

- Only two types of product on each vehicle
- Consistent constraints
 - Customers visited in 'patterns' (Period Routing)
 - Same driver every day
 - Around the same time
- Meet ferry
- Blood transport (dynamic time window)
- Promiscuous driver constraint

New data sources

- Routing with time-of-day dependent travel times
 - Uses historical data to forecast travel time at different times of day
- Routing with dynamic travel times
 - Uses live traffic information feed to update expected travel time dynamically

Stochastic Routing

- What if things don't go according to plan?
- Sources of uncertainty
 - Uncertainty in existence (do I even need to visit)
 - Uncertainty in quantity (how much is actually required)
 - Uncertainty in travel times (traffic)
 - Uncertainty in duration (maintenance engineer)

- Optimal solution can be brittle
 - If something is not quite right, whole solution falls apart

□ E.g. garbage collection

- Wet rubbish is heavy. On rainy days, trucks may have more load than usual (uncertainty in quantity)
- Need stops near dump in case they have to double back
- = Recourse.

