

Outline

- Introduction to Location Analysis
- Weighting Factor Models
- Load Distance Models
- Break-Even Analysis

- Center of Gravity Models
- Facility Location and Capacity Allocation
- In class mini case Paramount Manufacturing

"Location, Location, Location!"

- Location decisions for residential homes are important because ...
 - $\hfill\square$ They affect travel time to work, to school, to recreational
 - centers, and to shopping malls.
 A home in a good school district is particularly important for
 - most parents with school-age children.
 A home in a "bad" neighborhood means the residents are
 - exposed to higher risk of crimes and drugs, while a home is a "good" neighborhood is a source of pride and status.

"Location, Location, Location!"

- Location decisions are important to businesses because ...
 - They affect the demand from customers
 - They affect the cost of doing business, and the flow of aoods and services.
 - They commit the organization to long lasting financial, employment, and distribution patterns. For retail outlets, location affects the demand for their products/services. For labor-intensive operations, labor costs may force an organization to relocate its operations to locations where wages are lower.

Demand-pulled, or ...

- Location decisions are either demand-pulled, supply-pushed, or more frequently, both demandpulled and supply pushed.
- $\hfill\square$ Demand-pulled
 - Market-related factors such as the location of customers, the location of the competition, the need for room for expansion, and the community's attitude towards the organization.

... Supply-pulled

Supply-pushed location factors

- Based on the cost of doing business. The cost of doing business may be tangible or intangible.
 - Tangible costs: cost of site and construction, availability and costs of labor, transportation cost (proximity to suppliers and markets), utilities (availability and costs), taxes, and real estate (site acquisition, preparation and construction) costs.
 - Intangible costs: Zoning and legal regulations, community attitudes, proximity to parent company's facilities, expansion potential, labor climate, training and employment services, and the quality of life (schools, recreation and cultural attractions, amount and type of housing available).

Location Decisions

- Location decisions affect processes and departments
 - Marketing
 - Human resources
 - Accounting and finance
- Many factors are sensitive to location / High impact on the company's ability to meet its goals
- <u>Facility location</u> is the process of determining a geographical site for a firm's operations.

Dominant factors	affecting location
In Manufacturing	In Services
 Proximity to Materials (raw materials & supplies) 	Proximity to customers
 Labor cost and Climate 	 Location of competitors
 Proximity to Markets (or to transportation) 	 Transportation costs and proximity to markets
 Infrastructure, taxes, real estate costs 	 Level and kind of business activity
Quality of life	Residential density
Relation to parent and group companies' facility location	Traffic flowSite visibility

The Strategic Importance of

Location

- One of the most important decisions a firm makes
- Increasingly global in nature
- Significant impact on fixed and variable costs
- Decisions made relatively infrequently
- Long-term decisions
- Once committed to a location, many resource and cost issues are difficult to change

The Strategic Importance of Location

The objective of location strategy is to maximize the benefit of location to the firm

Options include

- 1. Expanding existing facilities
- 2. Maintain existing and add sites
- 3. Closing existing and relocating

Location and Costs

- Location decisions based on low cost require careful consideration
- Once in place, location-related costs are fixed in place and difficult to reduce
- Determining optimal facility location is a good investment

Factors That Affect Location Decisions

- Globalization adds to complexity:
 - Market economics
 - Communication
 - Rapid, reliable transportation Ease of capital flow
 - Differing labor costs
- Trade quotas, language, culture, government stability and cooperation, monetary system, infrastructure, etc. can sometimes force a multinational corporation to divest its interest in a country.
- Identify key success factors (KSFs)

	Competitiveness of Countries	142 Selected
	COUNTRY	2011-2012 RANKING
	Switzerland	1
	Singapore	2
	Sweden	3
	Finland	4
	USA	5
Global	Japan	9
•	UK	10
Competitiveness	Canada	12
e empedat enece	Israel	22
Index of Countries	China	26
	Mexico	58
	Vietnam	65
	Russia	66
	Haiti	141
	Chad	142

Factors That Affect Location Decisions

- Exchange rates and currency risks
 - Can have a significant impact on costs
 - Rates change over time

Costs

- Tangible easily measured costs such as
- utilities, labor, materials, taxes Intangible - less easy to quantify and include education, public transportation, community, quality-of-life

Factors That Affect Location Decisions Exchange rates and currency risks Can have a significant impact on costs Rates change over to the second se Location decisions

Costs

Tangible - easily me

- utilities, labor, mate Intangible - less eas education, public tro quality-of-life
- based on costs alone can create difficult ethical situations

Factors That Affect Location Decisions

Political risk, values, and culture

- National, state, local governments attitudes toward private and intellectual property, zoning, pollution, employment stability may be in flux
- Worker attitudes towards turnover, unions, absenteeism
- Globally cultures have different attitudes towards punctuality, legal, and ethical issues

Factors That Affect Location Decisions

- Proximity to markets
 - Very important to services
 - JIT systems or high transportation costs may make it important to manufacturers
- Proximity to suppliers
 - Perishable goods, high transportation costs, bulky products

Factors That Affect Location Decisions

- Proximity to competitors (clustering)
 - Often driven by resources such as natural, information, capital, talent
 - Found in both manufacturing and service industries

Weighting Factor Models

Locating a Single Facility

Expand onsite, build another facility, or relocate to another site?

- Onsite expansion
- Building a new plant or moving to a new retail or office space
- Comparing several sites?

Selecting a New Facility

Step 1:	Identify the important location factors and categorize them as dominant or secondary
Step 2:	Consider alternative regions; then narrow to alternative communities and finally specific sites
Step 3:	Collect data on the alternatives
Step 4:	Analyze the data collected, beginning with the quantitative factors
Step 5:	Bring the <i>qualitative</i> factors pertaining to each site into the evaluation

Factor-Rating Method

- Popular because a wide variety of factors can be included in the analysis
- Six steps in the method
 - Develop a list of relevant factors called key success factors
 - 2. Assign a weight to each factor
 - 3. Develop a scale for each factor
 - 4. Score each location for each factor
 - 5. Multiply score by weights for each factor for each location
 - 6. Make a recommendation based on the highest point score

Fac	tor-F	Ratir	ng Ex	ample	
TARLE	eights Score	es and Solut	ion		
mote		SC (OUT	ORES OF 100)	WEIGHTED SC	ORES
Labor availability and attitude	.25	70	60	(.25)(70) = 17.5	(.25)(60) = 15.0
People-to-car ratio	.05	50	60	(.05)(50) = 2.5	(.05)(60) = 3.0
Per capita income	.10	85	80	(.10)(85) = 8.5	(.10)(80) = 8.0
Tax structure	.39	75	70	(.39)(75) = 29.3	(.39)(70) = 27.3
Education and health	.21	60	70	(.21)(60) = 12.6	(.21)(70) = 14.7
Totals	1.00			70.4	68.0

AMPLE 1 new medical facility, Health-Watch, is to	be located in E	Frie, Pennsylv
AMPLE 1 new medical facility, Health-Watch, is to	be located in E	rie, Pennsylv
new medical facility, Health-Watch, is to	be located in E	rie, Pennsylv
e rollowing rable shows the location radie excellent) for one potential site. The w ercent. A weighted score (WS) will be ca 'S for this site?	reights in this cas	a scores (1 = se add up to ch site. What
Location Eactor	WALANT	
Location Factor	25	Score
Location Factor Total patient miles per month	25	4
Location Factor Total patient miles per month Facility utilization	25 20	4
Location Factor Total patient miles per month Facility utilization Average time per emergency trip	25 20 20	4 3 3
Location Factor Total patient miles per month Facility utilization Average time per emergency trip Expressway accessibility	25 20 20 15	4 3 3 4

JOLUTION	Location Easter	Woight	Scor
	Total patient miles per month	25	4
The WS for this particular site is	Facility utilization	20	3
calculated by multiplying each	Average time per emergency trip	20	3
actor's weight by its score and adding the results:	Expressway accessibility	15	4
	Land and construction costs	10	1
•	Employee preferences	10	5
$WS = (25 \times 4) + (20 \times 3) + (2)$ $= 100 + 60 + 60 + 60 + 60 + 60 + 60 + 60 $	20 × 3) + (15 × 4) + (10 × 1 10 + 50	l) + (10	× 5)

Calculat	ting `	Weighte	ed Scor	es
EXAMPLE 2				
tactory. They hav 0 to 10 basis (10 be preferred?	e assigne is best).	d scores shown bo Using the prefere	elow to the rele ince matrix, whi	evant factors on c ich location would
Location				
Factor	Weight	The Neighborhood	Sesame Street	Ronald's Playhouse
Factor Material Supply	Weight 0.1	The Neighborhood 5	Sesame Street	Ronald's Playhouse 8
Factor Material Supply Quality of Life	Weight 0.1 0.2	The Neighborhood 5 9	Sesame Street 9 8	Ronald's Playhouse 8 4

4 _____

7

0.4

3

Labor Skills

	Ū		•				
Vanagement is a actory. They have to 10 basis (10	considering ve assigne) is best).	g three p d scores Using th	potential s shown b e prefere	location elow to nce mo	ns for a n the relev atrix, whice	ew cook vant fac ch locati	tie tors on on wou
e preferred?							
e preferred? Location Factor	Weight	T Neight	he borhood	Se	same treet	Rona Playh	ald's iouse
e preferred?	Weight 0.1	T Neight 5	he borhood 0.5	Se Si 9	same treet 0.9	Rona Playh 8	ald's iouse 0.8
e preferred? Location Factor Material Supply Quality of Life	Weight 0.1 0.2	T Neight 5 9	he borhood 0.5 1.8	Se Si 9 8	same treet 0.9 1.6	Rona Playh 8 4	ald's iouse 0.8 0.8
e preferred? Location Factor Material Supply Quality of Life Mild Climate	Weight 0.1 0.2 0.3	T Neight 5 9 10	he porhood 0.5 1.8 3.0	Se Si 9 8 6	same treet 0.9 1.6 1.8	Rona Playh 8 4 8	ald's iouse 0.8 0.8 2.4
e preferred? Location Factor Material Supply Quality of Life Mild Climate Labor Skills	Weight 0.1 0.2 0.3 0.4	T Neight 5 9 10 3	he borhood 0.5 1.8 3.0 1.2	Se Si 9 8 6 4	same treet 0.9 1.6 1.8 1.6	Rona Playh 8 4 8 7	ald's iouse 0.8 0.8 2.4 2.8

Load Distance Models

Load-Distance (ld) Method

- Identify and compare candidate locations
 Like weighted-distance method
 - Select a location that minimizes the sum of the loads multiplied by the distance the load travels
 - Time may be used instead of distance

Load-Distance (ld) Method

- Calculating a load-distance score
 - Varies by industry
 - Use the actual distance to calculate *ld* score
 - Use rectangular or Euclidean distances
 - Different measures for distance
 - Find one acceptable facility location that minimizes the *ld* score
- Formula for the *ld* score

 $ld = \sum_{i} l_i d_i$

Load-Distance (ld) Method

What is the distance between (20, 10) and (80, 60)?
SOLUTION

Euclidean distance:

 $d_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} = \sqrt{(20 - 80)^2 + (10 - 60)^2} = 78.1$

Rectilinear distance:

 $d_{AB} = |x_A - x_B| + |y_A - y_B| = |20 - 80| + |10 - 60| = 110$

Load-Distance (ld) Method

EXAMPLE 3

Management is investigating which location would be best to position its new plant relative to two suppliers (located in Cleveland and Toledo) and three market areas (represented by Cincinnati, Dayton, and Lima). Management has limited the search for this plant to those five locations. The following information has been collected. Which is best, assuming rectilinear distance?

Location	(x, y) coordinates	Trips/year
Cincinnati	(11, 6)	15
Dayton	(6, 10)	20
Cleveland	(14, 12)	30
Toledo	(9, 12)	25
Lima	(13, 8)	40

Calculating the distances							
Rectilinear distance: $d_{AB} = x_A - x_B + y_A - y_B $							
		(11, 6)	(6, 10)	(14, 12)	(9, 12)	(13, 8)	
		CIN	DAY	CLE	TOL	LIM	
(11, 6)	CIN	0	9	9	8	4	
(6, 10)	DAY	9	0	10	5	9	
(14, 12)	CLE	9	10	0	5	5	
(9, 12)	TOL	8	5	5	0	8	
(13, 8)	LIM	4	9	5	8	0	

Load-Distance (ld) Met	hod	
SOUTION	Location	(x, y) coordinates	Trips/year
3010101	Cincinnati	(11, 6)	15
Calculations:	Dayton	(6, 10)	20
(using rectilinear distances)	Cleveland	(14, 12)	30
	Toledo	(9, 12)	25
	Lima	(13, 8)	40
Cincinnati = 15(0) + 20(9) + 3 Dayton = 15(9) + 20(0) + 3 Cleveland = 15(9) + 20(10) + Toledo = 15(8) + 20(5) + 3 Lima = 15(4) + 20(9) + 3	60(9) + 25(8 60(10) + 25 30(0) + 25 60(0) + 25(8 60(5) + 25(8	$\begin{array}{l} 3) + 40(4) & = \\ (5) + 40(9) & = \\ (5) + 40(5) & = \\ 0) + 40(8) & = \\ 3) + 40(0) & = \end{array}$	= 810 = 920 = 660 = 690 = 590
Linia - 10(4) · 20(5) · 5		5, · · • • (0)	

Center of Gravity Models
center of Oravity Models

- Finds location of distribution center that minimizes distribution costs
- Considers
 - Location of markets
 - Volume of goods shipped to those markets
 - Shipping cost (or distance)

Center-of-Gravity Method

- $\hfill\square$ Place existing locations on a coordinate grid Grid origin and scale is arbitrary Maintain relative distances
- \Box Calculate x and y coordinates for 'center of gravity'
 - Assumes cost is directly proportional to distance and volume shipped

Center of Gravity Method

□ A good starting point (shortest distance location) Find x coordinate, x*, by multiplying each point's x coordinate by its load (l_i), summing these products

- $\Sigma l_i x_i$, and dividing by Σl_i
- The center of gravity's y coordinate y* found the same way
- Generally not the optimal location

 $x^* = \frac{\sum_i l_i x_i}{\sum_i l_i}$ $y^{\star} = \frac{\sum_{i} l_{i} y_{i}}{\sum_{i} l_{i}}$

XAMPLE 4 supplier to the electric u		
supplier to the electric u		
ore than 600,000 tons of shown below:	are to be shipped to eight	major customer loca
Customer Location	Tons Shipped (I _i)	(x, y) Coordinates
Customer Location	Tons Shipped (I _i)	(x, y) Coordinates
Three Rivers, MI	5,000	(7, 13)
Customer Location	Tons Shipped (I _i)	(x, y) Coordinate
Three Rivers, MI	5,000	(7, 13)
Fort Wayne, IN	92,000	(8, 12)
Customer Location	Tons Shipped (I _i)	(x, y) Coordinates
Three Rivers, MI	5,000	(7, 13)
Fort Wayne, IN	92,000	(8, 12)
Columbus, OH	70,000	(11, 10)
Customer Location	Tons Shipped (I,)	(x, y) Coordinates
Three Rivers, MI	5,000	(7, 13)
Fort Wayne, IN	92,000	(8, 12)
Columbus, OH	70,000	(11, 10)
Ashland, KY	35,000	(11, 7)
Customer Location	Tons Shipped (l,)	(x, y) Coordinates
Three Rivers, MI	5,000	(7, 13)
Fort Wayne, IN	92,000	(8, 12)
Columbus, OH	70,000	(11, 10)
Ashland, KY	35,000	(11, 7)
Kingsport, TN	9,000	(12, 4)
Customer Location	Tons Shipped (l _i)	(x, y) Coordinates
Three Rivers, MI	5,000	(7, 13)
Fort Wayne, IN	92,000	(8, 12)
Columbus, OH	70,000	(11, 10)
Ashland, KY	35,000	(11, 7)
Kingsport, TN	9,000	(12, 4)
Akron, OH	227,000	(13, 11)
Customer Location Three Rivers, MI Fort Wayne, IN Columbus, OH Ashland, KY Kingsport, TN Akron, OH Wheeling, WV	Tons Shipped (l) 5,000 92,000 70,000 35,000 9,000 227,000 16,000	(x, y) Coordinate: (7, 13) (8, 12) (11, 10) (11, 7) (12, 4) (13, 11) (14, 10)

$$y^{\star} = \frac{\sum_{l,ly_i}^{l}}{\sum_{l_i} l_i} = \frac{\left[(20 \times 8.5) + (15 \times 9.5) + (30 \times 1.5) \right]}{(20 + 15 + 30)} = 5.5$$

Locational Cost-Volume Analysis

- An economic comparison of location alternatives
- Cost Volume analysis / Break Even Analysis
 Five steps:
 - 1. Determine fixed and variable costs for each location
 - 2. Plot the total line cost for each location
 - 3. Identify the approximate ranges for which each location has lowest cost
 - Solve algebraically for break-even points over the relevant ranges
 - 5. Select location with lowest total cost for the expected production volume

xample			
Three locatior	IS:		
Selling price = Expected volu	: \$120 ime = 2,000 un	iits	
City	Fixed Cost	Variable Cost	Total Cost
Athens	\$30,000	\$75	\$180,000
Brussels	\$60,000	\$45	\$150,000
1.1.1.1.1.1	\$110.000	\$25	\$160.000

AMPLE 7		
uipment, and b	uildings) and the variable o	osts (labor, materials,
Community	d variable overhead) are o	us follows:
Community	d variable overhead) are o Fixed Costs per Year \$150,000	Variable Costs per Unit
Community	Fixed Costs per Year \$150,000	Variable Costs per Unit \$62
Community A B	d variable overhead) are of Fixed Costs per Year \$150,000 \$300,000	variable Costs per Unit \$62 \$38
Community A B C	d variable overhead) are o Fixed Costs per Year \$150,000 \$300,000 \$500,000	Variable Costs per Unit \$62 \$38 \$24

Break-Even Analysis for Location

- Step 1: Plot the total cost curves for all the communities on a single graph. Identify on the graph the approximate range over which each community provides the lowest cost.
- Step 2: Using break-even analysis, calculate the break-even quantifies over the relevant ranges. If the expected demand is 15,000 units per year, what is the best location?

Break-Even Analysis for Location			
output levels	s: $Q = 0$ and Q	j = 20,000 units per year. For t	the $Q = 0$ level,
the total cos cost (fixed p	t is simply the t olus variable co	fixed costs. For the $Q = 20,000$ osts) is as follows:) level, the total
the total cos cost (fixed p Community	t is simply the following the	fixed costs. For the $Q = 20,000$ osts) is as follows: Variable Costs (Cost per Unit)(No. of Units)) level, the total Total Cost (Fixed + Variable
the total cost cost (fixed p Community A	t is simply the following the state of the second state of the sec	fixed costs. For the $Q = 20,000$ sts) is as follows: Variable Costs (Cost per Unit)(No. of Units)	Total Cost (Fixed + Variable
the total cost cost (fixed p Community A B	t is simply the total state of the field of	fixed costs. For the $Q = 20,000$ sts) is as follows: Variable Costs (Cost per Unit)(No. of Units)) level, the total Total Cost (Fixed + Variable
the total cost cost (fixed p Community A B C	t is simply the follow variable control of the follow variable control of the follow for the fol	fixed costs. For the $Q = 20,000$ sts) is as follows: Variable Costs (Cost per Unit)(No. of Units)) level, the total Total Cost (Fixed + Variable

Break-Even	Analysis	for Location	I
------------	----------	--------------	---

SOLUTION

To plot a community's total cost line, let us first compute the total cost for two output levels: Q = 0 and Q = 20,000 units per year. For the Q = 0 level, the total cost is simply the fixed costs. For the Q = 20,000 level, the total cost (fixed plus variable costs) is as follows:

Community	Fixed Costs	Variable Costs (Cost per Unit)(No. of Units)	Total Cost (Fixed + Variable)
Α	\$150,000	\$62(20,000) = \$1,240,000	\$1,390,000
в	\$300,000	\$38(20,000) = \$760,000	\$1,060,000
С	\$500,000	\$24(20,000) = \$480,000	\$980,000
D	\$600,000	\$30(20,000) = \$600,000	\$1,200,000

EXA	MPLE 8				
By c	y chance, the Atlantic City Community Chest has to close temporarily for				
gene	erui repuirs. They are co	insidering roor rempo	ruly office locations:		
	Property Address	Move-in Costs	Monthly Rent		
	Boardwalk	\$400	\$50		
	Marvin Gardens	\$280	\$24		
		¢250	\$10		
	St. Charles Place	\$ 350	v . v		

Locating a single facility – In class mini case
Localing a single racinty – in class mini case

