
\qquad
\qquad

Outline

\qquad
\qquad
\square Introduction to Location Analysis
\square Weighting Factor Models \qquad
\square Load Distance Models
\qquad
Break-Even Analysis
Center of Gravity Models
Facility Location and Capacity Allocation \qquad

In class mini case - Paramount Manufacturing \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

"Location, Location, Location!"

\square Location decisions for residential homes are important because ..

- They affect travel time to work, to school, to recreational centers, and to shopping malls.
- A home in a good school district is particularly important for most parents with school-age children.
- A home in a "bad" neighborhood means the residents are exposed to higher risk of crimes and drugs, while a home is a "good" neighborhood is a source of pride and status.

"Location, Location, Location!"

\qquad
\square Location decisions are important to businesses because ...
\square They affect the demand from customers

- They affect the cost of doing business, and the flow of goods and services.
- They commit the organization to long lasting financial, employment, and distribution patterns. For retail outlets, location affects the demand for their products/services. For labor-intensive operations, labor costs may force an organization to relocate its operations to locations where wages are lower.

Demand-pulled, or ...

\square Location decisions are either demand-pulled, supply-pushed, or more frequently, both demandpulled and supply pushed.
Demand-pulled

- Market-related factors such as the location of customers, the location of the competition, the need for room for expansion, and the community's attitude towards the organization.

... Supply-pulled

\square Supply-pushed location factors
\square Based on the cost of doing business. The cost of doing business may be tangible or intangible.

- Tangible costs: cost of site and construction, availability and costs of labor, transportation cost (proximity to suppliers and markets), utilities (availability and costs), taxes, and real estate (site acquisition, preparation and construction) costs.
Intangible costs: Zoning and legal regulations, community attitudes, proximity to parent company's facilities, expansion potential, labor climate, training and employment services, and the quality of life (schools, recreation and cultural attractions, amount and type of housing available).

Location Decisions

Location decisions affect processes and departments

- Marketing
- Human resources
- Accounting and finance
-
\square Many factors are sensitive to location / High impact on the company's ability to meet its goals
Facility location is the process of determining a geographical site for a firm's operations.

Dominant factors affecting location

	In Manufacturing	In Services
-	Proximity to materials (raw	- Proximity to customers

The Strategic Importance of Location

\square One of the most important decisions a firm makes
\square Increasingly global in nature
\square Significant impact on fixed and variable costs
\square Decisions made relatively infrequently
\square Long-term decisions
\square Once committed to a location, many resource and cost issues are difficult to change
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Strategic Importance of Location

The objective of location strategy is to maximize the benefit of location to the firm \qquad
Options include
Expanding existing facilities \qquad
2. Maintain existing and add sites
3. Closing existing and relocating

Location and Costs

Location decisions based on low cost require careful consideration
Once in place, location-related costs are fixed in place and difficult to reduce
Determining optimal facility location is a good \qquad investment

Factors That Affect Location Decisions

\square Globalization adds to complexity:

- Market economics
- Communication
- Rapid, reliable transportation
- Ease of capital flow
\square Differing labor costs
\square Trade quotas, language, culture, government stability and cooperation, monetary system, infrastructure, etc. can sometimes force a multinational corporation to divest its interest in a country.
\square Identify key success factors (KSFs)

Location Decisions

Country Decision
Key Success Factors

1. Political risks, government rules, attitudes, incentives
2. Cultural and economic issues
3. Location of markets
4. Labor talent, attitudes, productivity, costs \qquad
5. Availability of supplies, communications, energy
6. Exchange rates and currency risks

Location Decisions

Region/ Community	Key Success Factors Decision
1. Corporate desires	
2. Attractiveness of region	

Site Decision
 Key Success Factors

Site size and cost
2. Air, rail, highway, and waterway systems
3. Zoning restrictions
4. Proximity of services/ supplies needed
5. Environmental impact issues
\qquad
\qquad

	couniry	
	Swizeremed	,
	${ }_{\text {Stagemere }}$	2
	${ }_{\text {S }}$	${ }_{4}^{4}$
Global	usa	5
Global	${ }_{\text {lopen }}^{\text {Lepen }}$	10
Competitiveness		10
Index of Countries		22 26
	Mosico Verem	58 65
	Rassia	66
	Hatiif	${ }_{1}^{141}$

Factors That Affect Location Decisions
\square Labor productivity
Wage rates are not the only cost

- Lower productivity may increase total cost

$$
\frac{\text { Labor cost per day }}{\text { Productivity (units per day) }}=\text { Cost per unit }
$$

South Carolina Mexico
$\frac{\$ 70}{60 \text { units }}=\$ 1.17$ per unit $\quad \frac{\$ 25}{20 \text { units }}=\$ 1.25$ per unit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20 units $=\$ 1.25$ per unit

Factors That Affect Location Decisions

\square Exchange rates and currency risks
\square Can have a significant impact on costs \qquad

- Rates change over time
\square Costs
- Tangible - easily measured costs such as utilities, labor, materials, taxes
- Intangible - less easy to quantify and include education, public transportation, community, quality-of-life

Factors That Affect Location Decisions
\square Exchange rates and currency risks

- Can have a significant impact on costs
- Rates change over

Location decisions

- Tangible - easily me based on costs alone utilities, labor, mate can create difficult
- Intangible - less eas ethical situations education, public tr quality-of-life

Factors That Affect Location

Decisions

Political risk, values, and culture

- National, state, local governments attitudes toward private and intellectual property, zoning, pollution, employment stability may be in flux \qquad
- Worker attitudes towards turnover, unions, absenteeism
- Globally cultures have different attitudes towards punctuality, legal, and ethical issues
\qquad
\qquad
\qquad

\qquad
\qquad

Factors That Affect Location

Decisions

\square Proximity to markets

- Very important to services
- JIT systems or high transportation costs may make it important to manufacturers
Proximity to suppliers
- Perishable goods, high transportation costs, bulky products
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factors That Affect Location Decisions

Proximity to competitors (clustering)

- Often driven by resources such as natural, information, capital, talent
- Found in both manufacturing and service industries

\qquad
\qquad
\qquad
\qquad
\qquad

Locating a Single Facility

\qquad

Expand onsite, build another facility, or relocate to another site? \qquad

- Onsite expansion
\qquad
Building a new plant or moving to a new retail or office space
\qquad
\square Comparing several sites?

Selecting a New Facility

Step 1: Identify the important location factors and categorize them as dominant or secondary
Step 2: Consider alternative regions; then narrow to alternative communities and finally specific sites
Step 3: Collect data on the alternatives
Step 4: Analyze the data collected, beginning with the quantitative factors
Step 5: Bring the qualitative factors pertaining to each site into the evaluation

Factor-Rating Method

Popular because a wide variety of factors can be included in the analysis
Six steps in the method
Develop a list of relevant factors called key success factors
2. Assign a weight to each factor
. Develop a scale for each factor
4. Score each location for each factor
5. Multiply score by weights for each factor for each location
Make a recommendation based on the highest point score
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factor-Rating Example \qquad

TABLE	Weights, Scores, and Solution				
		$\begin{aligned} & \text { SCORES } \\ & \text { (OUT OF 100) } \end{aligned}$		WEIGHTED SCORES	
ksF	WEICHT	france	denmark	FRANCE	denmark
Labor availability and attitude	. 25	70	60	$(.25)(70)=17.5$	$(.25)(60)=15.0$
People-to-car ratio	. 05	50	60	(.05)(50) $=2.5$	$(.05)(60)=3.0$
Per capita income	. 10	85	80	$(.10)(85)=8.5$	$(.10)(80)=8.0$
Tax structure	. 39	75	70	$(.39)(75)=29.3$	$(.39)(70)=27.3$
Education and health	. 21	60	70	$(.21)(60)=12.6$	$(.21)(70)=14.7$
Totals	1.00			70.4	68.0

Calculating Weighted Scores

EXAMPLE 1

A new medical facility, Health-Watch, is to be located in Erie, Pennsylvania. The following table shows the location factors, weights, and scores (1 = poor, $5=$ excellent) for one potential site. The weights in this case add up to 100 percent. A weighted score (WS) will be calculated for each site. What is the WS for this site? \qquad

Location Factor	Weight	Score
Total patient miles per month	25	4
Facility utilization	20	3
Average time per emergency trip	20	3
Expressway accessibility	15	4
Land and construction costs	10	1
Employee preferences	10	5

Calculating Weighted Scores

```
SOLUTION
The WS for this particular site is
calculated by multiplying each
factor's weight by its score and
adding the results:
\begin{tabular}{|lcc|}
\hline Location Factor & Weight & Score \\
\hline Total \\
Facitient miles per month & 25 & 4 \\
Average tiration per emergency trip & 20 & 3 \\
Axpersway accessibility & 20 & 3 \\
Expreswa & 15 & 4 \\
Land and constuction costs & 10 & 1 \\
Employee preferences & 10 & 5 \\
\hline
\end{tabular}
```

```
\(W S=(25 \times 4)+(20 \times 3)+(20 \times 3)+(15 \times 4)+(10 \times 1)+(10 \times 5)\)
\(=100+60+60+60+10+50\)
\(=340\)
```

The total WS of 340 can be compared with the total weighted cores for other sites being evaluated.

Calculating Weighted Scores

EXAMPLE 2

Management is considering three potential locations for a new cookie
factory. They have assigned scores shown below to the relevant factors on a
0 to 10 basis (10 is best). Using the preference matrix, which location would
be preferred?

Location Factor	Weight	The Neighborhood	Sesame Street	Ronald's Playhouse	
Material Supply	0.1	5	9	8	8
Quality of Life	0.2	9	8	4	
Mild Climate	0.3	10	6	8	
Labor Skills	0.4	3	4	7	

Calculating Weighted Scores

Management is considering three potential locations for a new cookie factory. They have assigned scores shown below to the relevant factors on a 0 to 10 basis (10 is best). Using the preference matrix, which location would be preferred?							
Location Factor	Weight	The Neighborhood		Sesame Street		Ronald's Playhouse	
Material Supply	0.1	5	0.5	9	0.9	8	0.8
Quality of Life	0.2	9	1.8	8	1.6	4	. 8
Mild Climate	0.3	10	3.0	6	1.8	8	2.4
Labor Skills	0.4	3	1.2	4	1.6	7	2.8
			6.5		5.9		6.8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Load-Distance (ld) Method \qquad
\square Identify and compare candidate locations

- Like weighted-distance method \qquad
- Select a location that minimizes the sum of the loads multiplied by the distance the load travels
- Time may be used instead of distance

Load-Distance (ld) Method

\qquad

Calculating a load-distance score

- Varies by industry
- Use the actual distance to calculate $l d$ score \qquad
- Use rectangular or Euclidean distances
- Different measures for distance
\qquad
- Find one acceptable facility location that minimizes the $l d$ score \qquad
Formula for the ld score

$$
l d=\sum_{i} l_{i} d_{i}
$$

Load-Distance (ld) Method

What is the distance between $(20,10)$ and $(80,60)$?
SOLUTION
Euclidean distance:
$d_{A B}=\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}}=\sqrt{(20-80)^{2}+(10-60)^{2}}=78.1$

Rectilinear distance:

$d_{A B}=\left|x_{A}-x_{B}\right|+\left|y_{A}-y_{B}\right|=|20-80|+|10-60|=110$

Load-Distance (ld) Method

EXAMPLE 3
Management is investigating which location would be best to position its new pant relative to two suppliers (located in Cleveland and Toledo) and three market areas (represented by Cincinnati, Dayton, and Lima). Managemen has limited the search for this plant to those five locations. The following information has been collected. Which is best, assuming rectilinear distance?

Location	(x, y) coordinates	Trips/year
Cincinnati	$(11,6)$	15
Dayton	$(6,10)$	20
Cleveland	$(14,12)$	30
Toledo	$(9,12)$	25
Lima	$(13,8)$	40

\qquad

Calculating the distances

Rectilinear distance:
$d_{A B}=\left\|x_{A}-x_{B}\right\|+\left\|y_{A}-y_{B}\right\|$
:---:
$(11,6)$
$(6,10)$
$(14,12)$
$(9,12)$
$(13,8)$

\qquad
\qquad
SOLUTION
\qquad
\qquad
\qquad
Dayton $=15(9)+20(0)+30(10)+25(5)+40(9)=920$
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Center-of-Gravity Method

\qquad

Finds location of distribution center that minimizes distribution costs
\square Considers
Location of markets
Volume of goods shipped to those markets \qquad

- Shipping cost (or distance)

Center-of-Gravity Method

\square Place existing locations on a coordinate grid

- Grid origin and scale is arbitrary
- Maintain relative distances
\square Calculate x and y coordinates for 'center of gravity'
Assumes cost is directly proportional to distance and volume shipped

Center of Gravity Method

\qquad

A good starting point (shortest distance location)

- Find x coordinate, x^{*}, by multiplying each point's x coordinate by its load (l), summing these products $\sum l_{i} x_{i}$, and dividing by $\sum l_{i}$
- The center of gravity's y coordinate y^{*} found the same way
- Generally not the optimal location

$$
x^{*}=\frac{\sum_{i} l_{i} x_{i}}{\sum_{i} l_{i}} \quad y^{*}=\frac{\sum_{i} l_{i} y_{i}}{\sum_{i} l_{i}}
$$

Finding the Center of Gravity \qquad

EXAMPLE 4

\qquad
A supplier to the electric utility industry produces power generators; the transportation costs are high. One market area includes the lower part of the Great Lakes region and the upper portion of the southeastern region. More than 600,000 tons are to be shipped to eight major customer locations as shown below: \qquad

Customer Location	Tons Shipped $\left(\mathrm{l}_{\mathrm{I}}\right)$	(x, y) Coordinates
Three Rivers, MI	5,000	$(7,13)$
Fort Wayne, IN	92,000	$(8,12)$
Columbus, OH	70,000	$(11,10)$
Ashland, KY	35,000	$(11,7)$
Kingsport, TN	9,000	$(12,4)$
Akron, OH	227,000	$(13,11)$
Wheeling, WV	16,000	$(14,10)$
Roanoke, VA	153,000	$(15,5)$

Finding the Center of Gravity

$$
\begin{aligned}
& \text { What is the center of gravity for the } \\
& \text { lectric utilities supplier? Using } \\
& \text { ectilinear distance, what is the } \\
& \text { esulting load-distance score for this } \\
& \text { location? } \\
& \text { SOLUTION } \\
& \text { 153,000 } \\
& \text { The center of gravity is calculated as shown below: } \\
& \sum_{i} l_{i}=5+92+70+35+9+227+16+153=607 \\
& \sum_{i} l_{i} x_{i}=5(7)+92(8)+70(11)+35(11)+9(12)+227(13) \\
& +16(14)+153(15)=7,504 \\
& x^{*}=\frac{\sum_{i} l_{i} x_{i}}{\sum_{i} l_{i}}=\frac{7,504}{607}=12.4
\end{aligned}
$$

Finding the Center of Gravity
\qquad
\qquad
What is the center of gravity for the electric utilities supplier? Using rectilinear distance, what is the resulting load-distance score for this location?

Customer Location	Shipped	x, y Coordinat
Three Rivers, M1	5,000	(7, 13)
Fort Wayne, in	92,000	(8, 12)
Columbus, or	70,000	(11, 10)
Ashland, KY	35,00	(11,7)
Kingsport, TN	9,000	(12,4)
Akron, OH	227,000	(13, 11)
Wheeling, wv	16,000	(14, 10)
Roanoke, VA	153,000	(15,5)

$$
\begin{aligned}
\sum_{i} l_{i} y_{i}= & 5(13)+92(12)+70(10)+35(7)+9(4)+227(11) \\
& +16(10)+153(5)=5,572 \\
y^{*}= & \frac{\sum_{i} l_{i} y_{i}}{\sum_{i} l_{i}}=\frac{5,572}{607}=9.2
\end{aligned}
$$

Finding the Center of Gravity

What is the center of gravity for the electric utilities supplier? Using	Customer Location	Tons Shipped	x, y Coordinates
	Three Rivers, M1	5,000	${ }^{(7,13)}$
	Fort Wayne, in	92,000	(8, 12)
rectilinear distance, what is the	columbus, or	70,000	(11, 10)
resulting load-distance score for this	Ashland, KY Kingspot, TN	35,000 9.000	${ }_{\substack{(11,7) \\(12,4)}}^{(1)}$
location?		227,000	(13,11)
	Wheeing, wv	16,000	(14, 10)
	Roanoke, VA	153,000	(15,5)

The resulting load-distance score is

$l d=\sum_{i} l_{i} d_{i}=5(5.4+3.8)+92(4.4+2.8)+70(1.4+0.8)+$
$35(1.4+2.2)+90(0.4+5.2)+227(0.6+1.8)+$
$16(1.6+0.8)+153(2.6+4.2)$
$=2,662.4$
where
$d_{i}=\left|x_{i}-x^{*}\right|+\left|y_{i}-y^{*}\right|$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
eling, wv

153,000	$(144$,
$(15$,	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding the Center of Gravity

EXAMPLE 5

A firm wishes to find a central location for its service. Business forecasts indicate travel from the central location to New York City on 20 occasions
per year. Similarly, there will be 15 trips to Boston, and 30 trips to New per year. Similarly, there will be 15 trips to Boston, and 30 trips to New
Orleans. The x, y-coordinates are (11.0, 8.5) for New York, (12.0, 9.5) for Boston, and $(4.0,1.5)$ for New Orleans. What is the center of gravity of the oston, and $(4.0, \mathrm{c})$) for New Orleans. What is the center of gravity of the
SOLUTION

$$
\begin{gathered}
x^{*}=\frac{\sum_{i} l_{i} x_{i}}{\sum_{i} l_{i}}=\frac{[(20 \times 11)+(15 \times 12)+(30 \times 4)]}{(20+15+30)}=8.0 \\
y^{*}=\frac{\sum_{i} l_{i} y_{i}}{\sum_{i} l_{i}}=\frac{[(20 \times 8.5)+(15 \times 9.5)+(30 \times 1.5)]}{(20+15+30)}=5.5
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Locational

Cost-Volume Analysis
\square An economic comparison of location alternatives
\square Cost - Volume analysis / Break Even Analysis
Five steps:
Determine fixed and variable costs for each location
2. Plot the total line cost for each location \qquad
3. Identify the approximate ranges for which each location has lowest cost
4. Solve algebraically for break-even points over the relevant ranges
5. Select location with lowest total cost for the expected \qquad production volume

Locational Cost-Volume Analysis
 Example

Three locations
Selling price $=\$ 120$
Expected volume $=2,000$ units

City	Fixed Cost	Variable Cost	Total Cost
Athens	$\$ 30,000$	$\$ 75$	$\$ 180,000$
Brussels	$\$ 60,000$	$\$ 45$	$\$ 150,000$
Lisbon	$\$ 110,000$	$\$ 25$	$\$ 160,000$

Total Cost $=$ Fixed Cost $+($ Variable Cost x Volume $)$

Locational Cost-Volume Analysis
Example

Crossover point - Athens/Brussels
$30,000+75(x)=60,000+45(x)$
$30(x)=30,000$
$(x)=1,000$
Crossover point - Brussels/Lisbon
$60,000+45(x)=110,000+25(x)$
$20(x)=50,000$
$(x)=2,500$

Locational Cost-Volume Analysis
Example

| $\$ 180,000$ |
| :---: | :---: | :---: | :---: |
| $\$ 160,00$ |
| $\$ 150,00$ |

Break-Even Analysis for Location

EXAMPLE 7

An operations manager narrowed the search for a new facility location to
four communities. The annual fixed costs (land, property taxes, insurance,
equipment, and buildings) and the variable costs (labor, materials,
transportation, and variable overhead) are as follows:

Community	Fixed Costs per Year	Variable Costs per Unit
A	$\$ 150,000$	$\$ 62$
B	$\$ 300,000$	$\$ 38$
C	$\$ 500,000$	$\$ 24$
D	$\$ 600,000$	$\$ 30$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Break-Even Analysis for Location

\qquad

Step 1: Plot the total cost curves for all the communities on a single graph. Identify on the graph the approximate range over which each community provides the lowest cost.
Step 2: Using break-even analysis, calculate the break-even quantities over the relevant ranges. If the expected demand is 15,000 units per year, what is the best location?

Break-Even Analysis for Location

SOLUTION
To plot a community's total cost line, let us first compute the total cost for two utput levels: $Q=0$ and $Q=20,000$ units per year. For the $Q=0$ level, the total cost is simply the fixed costs. For the $Q=20,000$ level, the total cost (fixed plus variable costs) is as follows:

Community	Fixed Costs	Variable Costs (Cost per Unit)(No. of Units)	Total Cost (Fixed + Variable)
A	$\$ 150,000$		
B	$\$ 300,000$		
C	$\$ 500,000$		
D	$\$ 600,000$		

Break-Even Analysis for Location

SOLUTION
To plot a community's total cost line, let us first compute the total cost for two output levels: $Q=0$ and $Q=20,000$ units per year. For the $Q=0$ level, the total cost is simply the fixed costs. For the $Q=20,000$ level, the total ost (fixed plus variable costs) is as follows

Community	Fixed Costs	Variable Costs (Cost per Unit)(No. of Units)	Total Cost (Fixed + Variable)
A	$\$ 150,000$	$\$ 62(20,000)=\$ 1,240,000$	$\$ 1,390,000$
B	$\$ 300,000$	$\$ 38(20,000)=\$ 760,000$	$\$ 1,060,000$
C	$\$ 500,000$	$\$ 24(20,000)=\$ 480,000$	$\$ 980,000$
D	$\$ 600,000$	$\$ 30(20,000)=\$ 600,000$	$\$ 1,200,000$

Break-Even Analysis for Location

Figure shows the graph of
the total cost lines.
The line for community A goes from $(0,150)$ to (20, 1,390). The graph indicates that
community A is best for w intermediate volumes, We should no volumes. consider community because both its fixed because both its fixed and its variable cos are higher than

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Break-Even Analysis for Location

Step 2: The break-even quantity between A and B lies at the end of the first range, where A is best, and the beginning of the second range, where B is best. We find it by setting both communities' total cost equations equal to each other and solving:

(A)
$\$ 150,000+\$ 62 Q=\$ 300,000+\$ 38 Q$
$Q=6,250$ units

The break-even quantity between B and C lies at the end of the range over which B is best and the beginning of the final range where C is best. It is

(B)
$\$ 300,000+\$ 38 Q=$
$Q=14,286$ units

are needed. The break-even point between A and C lies above the shaded area, whic Step 2: The break-even quantity does not mark either the start or first range, where A is b dhe end of one of the three range, where B is best relevant ranges. total cost equations equ

\[

\]

The break-even quantity between B and C lies at the end of the range over which B is best and the beginning of the final range where C is best. It is

\[

\]

\qquad

Break-Even Analysis for Location

EXAMPLE 8

By chance, the Atlantic City Community Chest has to close temporarily for general repairs. They are considering four temporary office locations: \qquad

Property Address	Move-in Costs	Monthly Rent
Boardwalk	$\$ 400$	$\$ 50$
Marvin Gardens	$\$ 280$	$\$ 24$
St. Charles Place	$\$ 350$	$\$ 10$
Baltic Avenue	$\$ 60$	$\$ 60$

Use the graph on the next slide to determine for what length of lease each location would be favored? Hint: In this problem, lease length is analogous to volume.

Break-Even Analysis for Location \qquad
SOLUTION
$F_{s}+c_{s} Q=F_{B}+c_{B} Q$
$Q=\frac{F_{B}-F_{s}}{c_{s}-c_{B}}$

\qquad
\qquad
\qquad
\qquad
\qquad

In class mini case

\qquad

Paramount Manufacturing

Find the best location choosing from three, A, B and C, using Euclidian and rectilinear distances respectively. Compute the center of gravity and analyse whether location there is even better.

In A and B are located two of the company's suppliers. In C is located the market for the concerned product.
The following information has been collected for the three locations:

Loc.	Coordinates	Tons/Year	Rate (\$/ton-mile)
A	$(100,200)$	4.000	3,00
B	$(400,100)$	3.000	1,00
C	$(100,100)$	4.000	3,00

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

